PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An investigation into structural strengths of laterized concrete

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badanie wytrzymałości betonu z zastosowanym laterytem
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of an investigation into the characteristics of concrete containing laterite as a full or partial replacement of sand. Sand in a concrete mix proportion of 1:2:4:0.6 and 1:2:2:0.6 (cement: sand: coarse aggregate: water-cement ratio) was replaced with 0, 20, 40, 60, 80, and 100% laterite. The concrete strength was confined to characteristic concrete strength grade of 20 and 25 N/mm². Experimental results based on qualitative and quantitative data shows that, concrete produced at 28-day hydration period with up to 40%> replacement level of sand by laterite attained the designed concrete compressive strength of 20.48 N/mm² for concrete strength grade of 20 N/mm² but fell slightly below 25 N/mm² for concrete strength of grade 25 N/mm². This indicates the possibility of using laterite as a partial replacement for sand up to 40%>. It was also observed from the results obtained that the workability - of laterite concrete increased with increase in the replacement level of sand by laterite, while the cube compressive strength, split cylinder tensile strengths and the percentage water absorption of the concrete decreased with increase in the replacement level of sand. Regression models relating the split cylinder tensile strength and cube compressive strength of concrete strength grade of 20 and 25 N/mm² of partial sand replacement with laterite in the various percentage, yielded predictive models ƒt(C20) = 0.2093 (ƒcu)0.5259 and ƒt(C25) = 0.4961 (ƒcu)0.2945 with correlation coefficients R² = 0.8946 and R² = 0.947 respectively.
PL
W artykule przedstawiono wyniki badań w zakresie właściwości betonu zawierającego lateryt jako całkowity lub częściowy substytut piasku. Piasek z mieszanki betonowej o proporcji 1:2:4:0.6 i 1:2:2:0.6 (cement : piasek : kruszywo grube : stosunek cementowo-wodny) zastąpiono układem 0, 20, 40, 60, 80 i 100% laterytu. Wytrzymałość betonu została ograniczona do charakterystycznej wytrzymałości betonu - 20 i 25 N/mm². Eksperymentalne wyniki oparte na danych ilościowych i jakościowych pokazują, że beton po 28-dniowym okresie dojrzewania, w którym na poziomie do 40% zastąpiono piasek laterytem, osiągnął wytrzymałość na ściskanie 20,48 N/mm² dla zaprojektowanej klasy 20 N/mm², ale wartość wytrzymałości na ściskanie dla zaprojektowanej klasy 25 N/mm² spadła poniżej 25 N/mm². Wskazuje to na możliwość wykorzystania laterytu do częściowego zastąpienia piasku do 40%. Na podstawie otrzymanych wyników stwierdzono również, że urabialność betonu z wykorzystaniem laterytu wzrosła wraz ze wzrostem poziomu zastąpienia piasku przez lateryt, zaś wytrzymałość na ściskanie, wytrzymałość na rozciąganie i procent zużycia wody w betonie zmniejszyły się wraz ze wzrostem poziomu zastąpienia piasku. Modele regresji odnoszące się do wytrzymałości na rozciąganie i wytrzymałości na ściskanie betonu klasy 20 N/mm² i 25 N/mm², w którym piasek w różnych procentach częściowo zastąpiono laterytem, pozwoliły przyjąć modele analityczne: ƒt(C20) = 0.2093 (ƒcu)0.5259 oraz ƒt(C25) = 0.4961 (ƒcu)0.2945 ze współczynnikami R² = 0.8946 i R² = 0.947.
Rocznik
Strony
192--203
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
Bibliografia
  • [1] Adepegba D., A comparative study of normal concrete with concrete which contains laterite instead of sand, Building Science 1975, 10, 2, 135-141.
  • [2] Ajayi L.A., Report of the Committee on Review of Materials Testing, Control and Research, unpublished material, Federal Ministry of Works, Owerri 1982.
  • [3] Akinola A., On sourcing of local raw materials, Journal of Applied Science and Technology 1997, 2(1&1), 13-19.
  • [4] Murdock L.I., Brook K.M., Concrete material and practice, Fifth Edition, Edward Arnold (Publishers) Ltd, London 1979.
  • [5] Neville A.M., Brook J.J., Concrete Technology, Fourth Edition, Second Indian Print, Pearson Education Publisher, New Delhi 2003.
  • [6] Gambir M.L., Concrete Technology, 3rd Edition, McGraw-Hill Publishing Companies, New Delhi 2006.
  • [7] Jackson N., Dnir R.K., Civil Engineering Material, Fourth Edition, Addison Wesley Longman’s Limited Edinburgh Gate England 1991.
  • [8] Salau M.A., Balogun L.A., Shear resistance of reinforced laterized concrete beams without shear reinforcement, Building and Environment 1989, 25(1), 71-76.
  • [9] Krishna-Raju N., Ramakrishna R., Properties of laterite aggregate concrete, Materials and Structures 1972, 5(5), 307-314.
  • [10] Osunde J.A., Babalola J.I., Effect of mix proportion and reinforcement size on the arichorage hond stress of laterized concrete, Building and Environment 1991, 26(4), 447-452.
  • [11] Udoeyo F.F., Udeme H.I., Obasi O.O., Strength performance of laterized concrete, Construction and Building Materials 2006, 20(10), 1057-1062.
  • [12] Balogun L.A., Adepegba D., Effect of varying sand content in laterized concrete, The International Journal of Cement Composite and Concrete 1982, 4(4), 235-240.
  • [13] Osunade J.A., Effect of replacement of lateritic soils with granite fines on the compressive and tensile strengths of laterized concrete, Building and Environment 2002, 37(5), 491-496.
  • [14] Gardner N.J., Poon S.M., Time temperature effects on tensile, bond and compressive strength, Journal of American Concrete Institute 1976, 73(7), 405-409.
  • [15] Raphael J.M., Tensile Strength of Concrete, ACI Material Journal 1984, 81(2), 158-65.
  • [16] British Standard 8007: 1987 Design of concrete structures for retaining aqueous liquids. BSI, London, UK.
  • [17] Oluokun F.A., Prediction of concrete tensile strength from compressive strength of existing relations for normal concrete, ACI Material Journal 1991, 88(3), 302-309.
  • [18] Buildings Code Requirement for Reinforced Concrete: ACI Manual of Concrete Practice: Use of Concrete in Buildings-Design, Specifications and Related Topics, Part 3, revised 1992, 318-389.
  • [19] British Standard 8110: Part 1: 1985. Structural use of concrete. Code of Practice for design and construction. BSI, London, UK.
  • [20] British Standard 5328: Part 1: 1997. Concrete: Guide to specify concrete. BSI, London, UK.
  • [21] Udoeyo F.F., Brooks R., Utam C., Udo-Inyang P., Ukpong E.C., Effect of non-standard curing methods on the compressive strength of laterized concrete, ARPN Journal of Engineering and Applied Sciences 2010, 5(2), 6-20.
  • [22] British Standard 812: Part 103.1: 1985. Method for determination of particle size distribution -Sievetests. BSI, London, UK.
  • [23] British Standard 812: Part 2: 1995. Methods of determination of bulk densities of aggregate. BSI, London, UK.
  • [24] British Standard 812: Part 2: 1996. Methods of sampling and testing of mineral aggregates. BSI, UK.
  • [25] British Standard 812: Part 110: 1990. Methods for determination of aggregate crushing value. BSI, London, UK.
  • [26] British Standard 812: Part 112: 1990. Methods for determination of aggregate impact value. BSI, London, UK.
  • [27] British Standard 1881: Part 108: 1983. Method for making test cubes from fresh concrete. BSI, London, UK.
  • [28] British Standard 812: Part 107: 1995. Methods for determination of particle density and water absorption. BSI, London, UK.
  • [29] British Standard 1881: Part 111: 1983. Method of normal curing of concrete. BSI, London, UK.
  • [30] British Standard 1881: Part 102: 1983. Methods for determination of slump. BSI, London, UK.
  • [31] British Standard 1881: Part 103: 1983. Methods for determination of compacting factor. BSI, London, UK.
  • [32] British Standard 1881: Part 116: 1983. Method of determination of compressive strength of concrete cubes. BSI, London, UK.
  • [33] British Standard 1881: Part 115: 1983. Specification for compressive test machines for concrete. BSI, London, UK.
  • [34] British Standard 882: 1992. Specification for aggregate from natural sources for concrete. BSI, London, UK.
  • [35] American Society for Testing Materials Standards (ASTM) C330-333. Annual Book of ASTM Standards USA.
  • [36] British Standard 882: Part 2: 1973. Coarse and fine aggregate from natural sources. BSI, London, UK.
  • [37] British Standard (BS) 12: 1978. Specifications for cement. BSI, London, UK.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c912b9c9-b7a1-4914-8b38-69ecb74b97ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.