PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Line start permanent magnet synchronous motor supplied with voltage containing subharmonics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The presented study examines the effect of voltage subharmonics, which relates to components of the frequency less than the fundamental voltage harmonic, and the currents and vibration of the line start permanent magnet synchronous motor. The obtained experimental results corresponded to a production motor with a rated power of 3 kW and a rated speed of 1500 rpm. The main purpose of our study was to highlight that the subharmonic value had a non-linear effect on the vibration level of the considered motor. It was found that for subharmonic values up to approx. 0.5% of the vibration level could be considered acceptable for long-term operation, whereas vibration caused by voltage subharmonics of values greater than approx. 0.8% might promote machine damage.
Rocznik
Strony
28--34
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
  • Gdynia Maritime University Department of Ship Electrical Power Engineering 83 Morska St., 81-225 Gdynia, Poland
autor
  • Gdynia Maritime University Department of Ship Automation 83 Morska St., 81-225 Gdynia, Poland
  • Gdynia Maritime University Department of Ship Electrical Power Engineering 83 Morska St., 81-225 Gdynia, Poland
Bibliografia
  • 1. Arkkio, A., Cederström, S., Awan, H.A.A., Saarakkala, S.E. & Holopainen, T.P. (2018) Additional losses of electrical machines under torsional vibration. IEEE Transactions on Energy Conversion 33(1), pp. 245–251, doi: 10.1109/ TEC.2017.2733546.
  • 2. Barros, J., De Apraiz, M. & Diego, R.I. (2007) Measurement of subharmonics in power voltages. IEEE Lausanne Power Tech, Lausanne, Switzerland, 01–05 July 2007, pp. 1736–1740, doi: 10.1109/PCT.2007.4538578.
  • 3. Bollen, M.H.J. & Gu, I.Y.H. (2006) Signal processing of power quality disturbances. Chapter 2: Origin of Power Quality Variations. New York: Wiley, pp. 41–162, doi: 10.1002/0471931314.
  • 4. Crotti, G., D’Avanzo, G., Letizia, P.S. & Luiso, M. (2021) Measuring harmonics with inductive voltage transformers in presence of subharmonics. IEEE Transactions on Instrumentation and Measurement 70, pp. 1–13, doi: 10.1109/ TIM.2021.3111995.
  • 5. Debruyne, C., Sergeant, P., Derammelaere, S., Desmet, J.J.M. & Vandevelde, L. (2013) Influence of supply voltage distortion on the energy efficiency of line-start permanent-magnet motors. IEEE Transactions on Industry Applications 50(2), pp. 1034–1043, doi: 10.1109/ TIA.2013.2277593.
  • 6. Donolo, P.D., Pezzani, C., Quispe, E.C., De Angelo, C.H. & Bossio, G.R. (2017) Comparative analysis of the effects of voltage unbalance on the performance of IE 4 electric motors. 10th International Conference on Energy Efficiency in Motor Driven Systems – EEMODS’2017, Rome, Italy.
  • 7. EN Standard 50160:2010. Voltage characteristics of electricity supplied by public distribution network.
  • 8. Fonseca, D.S.B., Santos, C.M.C. & Cardoso, A.J.M. (2020) Stator faults modeling and diagnostics of line-start permanent magnet Synchronous motors. IEEE Transactions on Industry Applications 56(3), pp. 2590–2599, doi: 10.1109/TIA.2020.2979674.
  • 9. Ganesan, A.U. & Chokkalingam, L.N. (2019) Review on the evolution of technology advancements and applications of line-start synchronous machines. IET Electric Power Applications 13(1), pp. 1–16, doi: 10.1049/iet-epa.2018.5283.
  • 10. Ghaseminezhad, M., Doroudi, A., Hosseinian, S.H. & Jalilian, A. (2017a) Analysis of voltage fluctuation impact on induction motors by an innovative equivalent circuit considering the speed changes. IET Generation, Transmission & Distribution 11(2), pp. 512–519, doi: 10.1049/ietgtd.2016.1063.
  • 11. Ghaseminezhad, M., Doroudi, A., Hosseinian, S.H. & Jalilian, A. (2017b) An investigation of induction motor saturation under voltage fluctuation conditions. Journal of Magnetics 22(2), pp. 306–314, doi: 10.4283/ JMAG.2017.22.2.306.
  • 12. Ghaseminezhad, M., Doroudi, A., Hosseinian, S.H. & Jalilian, A. (2021a) Analytical field study on induction motors under fluctuated voltages. Iranian Journal of Electrical and Electronic Engineering 17(1), pp. 1620–1620, doi: 10.22068/IJEEE.17.1.1620.
  • 13. Ghaseminezhad, M., Doroudi, A., Hosseinian, S.H. & Jalilian, A. (2021b) High torque and excessive vibration on the induction motors under special voltage fluctuation conditions. COMPEL – The international journal for computations and mathematics in electrical and electronic engineering 40(4), pp. 822–836, doi: 10.1108/COMPEL-07- 2020-0234.
  • 14. Gnaciński, P. & Klimczak, P. (2020) High-Power induction motors supplied with voltage containing subharmonics. Energies 13(22), 5894, doi: 10.3390/en13225894.
  • 15. Gnaciński, P., Muc, A. & Pepliński, M. (2021) Influence of Voltage Subharmonics on Line Start Permanent Magnet Synchronous Motor. IEEE Access 9, pp. 164275–164281, doi: 10.1109/ACCESS.2021.3133279.
  • 16. Gnaciński, P., Pepliński, M., Hallmann, D. & Jankowski, P. (2019a) Induction cage machine thermal transients under lowered voltage quality. IET Electric Power Applications 13(4), pp. 479–486, doi: 10.1049/iet-epa.2018.5242.
  • 17. Gnaciński, P., Pepliński, M., Murawski, L. & Szeleziński, A. (2019b) Vibration of induction machine supplied with voltage containing subharmonics and interharmonics. IEEE Transactions on Energy Conversion 34(4), pp. 1928– 1937, doi: 10.1109/TEC.2019.2929534.
  • 18. Ho, S.L. & Fu, W.N. (2001) Analysis of indirect temperature-rise tests of induction machines using time stepping finite element method. IEEE Transactions on Energy Conversion 16(1), pp. 55–60, doi: 10.1109/60.911404.
  • 19. IEEE Standard 519-2022. IEEE Standard. Harmonic control in electric power systems.
  • 20. ISO Standard 10816-1:1995. Mechanical vibration – Evaluation of machine vibration by measurements on non-rotating parts – Part 1: General guidelines.
  • 21. ISO Standard 20816-1:2016. Mechanical vibration – Measurement and evaluation of machine vibration – Part 1: General guidelines.
  • 22. Maraaba, L.S., Milhem, A.S., Nemer, I.A., Al-Duwaish. H. & Abido, M.A. (2020) Convolutional neural network-based inter-turn fault diagnosis in LSPMSMs. IEEE Access 8, pp. 81960–81970, doi: 10.1109/ACCESS.2020.2991137.
  • 23. Nassif, A.B. (2019) Assessing the impact of harmonics and interharmonics of top and mudpump variable frequency drives in drilling rigs. IEEE Transactions on Industry Applications 55(6), pp. 5574–5583, doi: 10.1109/ TIA.2019.2929708.
  • 24. Pechivanidou, M.S.C. & Kladas, A.G. (2019) Comparison of alternate LSPMSM topologies considering both transient and steady-state operating characteristics. IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), Athens, Greece, 22–23 April 2019, pp. 40–45, doi: 10.1109/WEMDCD.2019.8887806.
  • 25. Qiu, H., Hu, K., Yi, R. & Wei, Y. (2019) Influence of voltage unbalance on the steady‐state performance of line start permanent magnet synchronous motors. IEEJ Transactions on Electrical and Electronic Engineering 14(11), pp. 1673– 1680, doi: 10.1002/tee.22990.
  • 26. Schramm, S., Sihler, C., Song-Manguelle, J. & Rotondo, P. (2010) Damping Torsional Interharmonic Effects of Large Drives. IEEE Transactions on Power Electronics 25(4), pp. 1090–1098, doi: 10.1109/TPEL.2009.2033274.
  • 27. Sethupathi, P. & Senthilnathan, N. (2020) Comparative analysis of line-start permanent magnet synchronous motor and squirrel cage induction motor under customary power quality indices. Electrical Engineering 102(3), pp. 1339– 1349, doi: 10.1007/s00202-020-00955-2.
  • 28. Soltani, H., Davari, P., Zare, F. & Blaabjerg, F. (2018) Effects of modulation techniques on the input current interharmonics of adjustable speed drives. IEEE Transactions on Industrial Electronics 65(1), pp. 167–178, doi: 10.1109/ TIE.2017.2721884.
  • 29. Tabora, J.M., De Lima Tostes, M.E., de Matos, E.O. & Bezerra, U.H. (2021) Voltage unbalance & variations impacts on IE4 Class LSPMM. 14th IEEE International Conference on Industry Applications (INDUSCON), São Paulo, Brazil, 15–18 August 2021, pp. 940–946, doi: 10.1109/INDUSCON51756.2021.9529505.
  • 30. Tabora, J.M., De Lima Tostes, M.E., De Matos, E.O., Bezerra, U.H., Soares, T.M. & De Albuquerque, B.S. (2020) Assessing voltage unbalance conditions in IE2, IE3 and IE4 classes induction motors. IEEE Access 8, pp. 186725–186739, doi: 10.1109/ACCESS.2020.3029794.
  • 31. Tarasiuk, T. (2011) Estimator-analyzer of power quality: Part I – Methods and algorithms. Measurement 44(1), pp. 238–247, doi: 10.1016/j.measurement.2010.09.049.
  • 32. Testa, A., Akram, M.F., Burch, R., Carpinelli, G., Chang, G., Dinavahi, V., Hatziadoniu, C., Grady, W.M., Gunther, E., Halpin, M., Lhn, P., Liu, Y., Langella, R., Lowenstein, M., Medina, A., Ortmeyer, T., Ranade, S., Ribeiro, P., Watson, N., Wikston, J. & Xu, W. (2007) Interharmonics: Theory and modelling. IEEE Transactions on Power Delivery 22(4), pp. 2335–2348, doi: 10.1109/ TPWRD.2007.905505.,
  • 33. Tripp, H., Kim, D. & Whitney, R. (1993) A Comprehensive Cause Analysis of a Coupling Failure Induced by Torsional Oscillations in a Variable Speed Motor. In Proceedings of the 22nd Turbomachinery Symposium. Texas A&M University. Turbomachinery Laboratories 23, pp. 17–23, doi: 10.21423/R1J94V.
  • 34. Tshoombe, B.K., Tabora, J.M., da Silva Fonseca, W., Tostes, M.E.L. & de Matos, E.O. (2021) Voltage harmonic impacts on line start permanent magnet motor. 14th IEEE International Conference on Industry Applications (INDUSCON), São Paulo, Brazil, 15–18 August 2021, pp. 962–968, doi: 10.1109/INDUSCON51756.2021.9529539.
  • 35. Tsypkin, M. (2017) The origin of the electromagnetic vibration of induction motors operating in modern industry: Practical experience – Analysis and diagnostics. IEEE Transactions on Industry Applications 53(2), pp. 1669–1676, doi: 10.1109/TIA.2016.2633946.
  • 36. Xie, X., Zhang, X., Liu, H., Liu, H., Li, Y. & Zhang, C. (2017) Characteristic analysis of subsynchronous resonance in practical wind farms connected to series-compensated transmissions. IEEE Transactions on Energy Conversion 32(3), pp. 1117–1126, doi: 10.1109/TEC.2017.2676024.
  • 37. Zhiyuan, M., Xiong, M.W., Le, L. & Zhong, X. (2017) Interharmonics analysis of a 7.5 kW air compressor motor. CIRED Open Access Proceedings Journal 2017(1), pp. 738–741, doi: 10.1049/oap-cired.2017.1132.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c90bd339-0335-4ba7-a2f6-d235a6d360bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.