Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Metamaterials, reconfigurable antenna arrays and holographic communication – preliminary analysis of a new concept of wireless data transmission
Konferencja
Konferencja Radiokomunikacji i Teleinformatyki (20-22.09.2023 ; Kraków, Polska)
Języki publikacji
Abstrakty
W ostatnich kilku latach bardzo duże zainteresowanie wśród naukowców z całego świata zdobywa niezwykle oryginalna koncepcja komunikacji holograficznej. Specyfika tego podejścia z jednej strony niezwykle mocno odbiega od znanych i stosowanych obecnie rozwiązań, z drugiej stwarza bardzo duże możliwości rozwojowe w zakresie komunikacji bezprzewodowej. W artykule w sposób przeglądowy przedstawiono dwa rozwiązania technologiczne, które stały się przyczyną powstania idei komunikacji holograficznej. Jako pierwsze opisano możliwość wykorzystania tzw. meta-materiałów dla celów bezprzewodowej transmisji danych, jako drugie natomiast – zastosowanie rekonfigurowalnych powierzchni antenowych. W ostatniej części przedstawiono z kolei założenia idei komunikacji holograficznej, w której znane z holografii optycznej zasady tworzenia obrazów zostały przeniesione do pasma radiowego i do pewnego stopnia uogólnione.
In the last few years, a very original concept of holographic communication has gained a lot of interest among scientists from all over the world. The specificity of this approach, on the one hand, is very different from the known and currently used solutions, on the other hand, it creates great development opportunities in the field of wireless communication. The article provides an overview of two technological solutions that gave rise to the idea of holographic communication. First, the possibility of using the so-called meta materials for the purposes of wireless data transmission, and the second – the use of reconfigurable antenna surfaces. The last part presents the assumptions of the idea of holographic communication, in which the principles of creating images known from optical holography have been transferred to the radio band, and to some extend – generalized.
Wydawca
Rocznik
Tom
Strony
29--39
Opis fizyczny
Bibliogr. 56 poz., rys.
Twórcy
Bibliografia
- [1] M. Agiwal, A. Roy, N. Saxena, “Next Generation 5G Wireless Networks: A Comprehensive Survey”, IEEE Communications Surveys & Tutorials, tom 18, nr 3, str. 1617-1655, trzeci kwartał 2016, doi: 10.1109/COMST.2016.2532458
- [2] A. Osseiran et al., “Scenarios for 5G mobile and wireless communications: the vision of the METIS project”, IEEE Communications Magazine, tom 52, nr 5, str. 26-35, May 2014, doi: 10.1109/MCOM.2014.6815890
- [3] M. R. Palattella et al., “Internet of Things in the 5G Era: Enablers, Architecture, and Business Models”, IEEE Journal on Selected Areas in Communications, tom 34, nr 3, str. 510-527, March 2016, doi: 10.1109/JSAC.2016.2525418
- [4] J. Zhang, Y. Gao, X. Sun, W. Zhan, P. Liu, Z. Guo, “Synchronous Multi-Link Access in IEEE 802.11be: Modeling and Network Sum Rate Optimization”, ICC 2022 - IEEE International Conference on Communications, Seul, Korea Południowa, 2022, str. 2309-2314, doi: 10.1109/ICC45855.2022.9838923
- [5] Y. Liu, Y. Yu, Z. Du, L. Cuthbert, “Sequential State Q-learning Uplink Resource Allocation in Multi-AP 802.11be Network”, 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall), Londyn, Wielka Brytania, 2022, str. 1-5, doi: 10.1109/VTC2022-Fall57202.2022.10013045
- [6] M. Knitter, R. Kays, “Spatial Reuse Insights for IEEE 802.11ax and IEEE 802.11be Wireless LANs and Beyond”, 2022 IEEE 33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Kioto, Japonia, 2022, str. 919-925. doi: 10.1109/PIMRC54779.2022.9978080
- [7] E. Khorov, I. Levitsky, I. F. Akyildiz, “Current Status, Directions of IEEE 802.11be, the Future Wi-Fi 7”, IEEE Access, tom 8, str. 88664-88688, 2020.doi: 10.1109/ACCESS.2020.2993448
- [8] C. Deng et al., “IEEE 802.11be Wi-Fi 7: New Challenges and Opportunities”, IEEE Communications Surveys & Tutorials, tom 22, nr 4, str. 2136-2166, czwarty kwartał 2020. doi: 10.1109/COMST.2020.3012715
- [9] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, M. Ayyash, “Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications”, IEEE Communications Surveys & Tutorials, tom 17, nr 4, str. 2347-2376, czwarty kwartał 2015, doi: 10.1109/COMST.2015.2444095
- [10] L. Chettri, R. Bera, “A Comprehensive Survey on Internet of Things (IoT) Toward 5G Wireless Systems”, IEEE Internet of Things Journal, tom 7, nr 1, str. 16-32, Jan. 2020. doi: 10.1109/JIOT.2019.2948888
- [11] P. H. Pathak, X. Feng, P. Hu, P. Mohapatra, “Visible Light Communication, Networking, and Sensing: A Survey, Potential and Challenges”, IEEE Communications Surveys & Tutorials, tom 17, nr 4, str. 2047-2077, czwarty kwartał 2015. doi: 10.1109/COMST.2015.2476474
- [12] H. Haas, L. Yin, Y. Wang, C. Chen, “What is LiFi?”, Journal of Lightwave Technology, tom 34, nr 6, str. 1533-1544, 15 March15, 2016. doi: 10.1109/JLT.2015.2510021
- [13] W. Jiang, B. Han, M. A. Habibi, H. D. Schotten, “The Road Towards 6G: A Comprehensive Survey”, IEEE Open Journal of the Communications Society, tom 2, str. 334-366, 2021, doi: 10.1109/ OJCOMS.2021.3057679
- [14] H. Al-Hraishawi, H. Chougrani, S. Kisseleff, E. Lagunas, S. Chatzinotas, “A Survey on Nongeostationary Satellite Systems: The Communication Perspective”, IEEE Communications Surveys & Tutorials, tom 25, nr 1, str. 101-132, pierwszy kwartał 2023. doi: 10.1109/COMST.2022.3197695
- [15] O. Kodheli et al., “Satellite Communications in the New Space Era: A Survey and Future Challenges”, IEEE Communications Surveys & Tutorials, tom 23, nr 1, str. 70-109, pierwszy kwartał 2021. doi: 10.1109/COMST.2020.3028247
- [16] W. Saad, M. Bennis, M. Chen, “A Vision of 6G Wireless Systems: Applications, Trends, Technologies, and Open Research Problems”, IEEE Network, tom 34, nr 3, str. 134-142, May/June 2020. doi: 10.1109/MNET.001.1900287
- [17] P. Yang, Y. Xiao, M. Xiao, S. Li, “6G Wireless Communications: Vision and Potential Techniques”, IEEE Network, tom 33, nr 4, str. 70-75, lipiec/sierpnień 2019. doi: 10.1109/MNET.2019.1800418
- [18] W. Yang et al., “Semantic Communications for Future Internet: Fundamentals, Applications, and Challenges”, IEEE Communications Surveys & Tutorials, tom 25, nr 1, str. 213-250, pierwszy kwartał 2023. doi: 10.1109/COMST.2022.3223224
- [19] M. Polese, L. Bonati, S. D’Oro, S. Basagni, T. Melodia, “Understanding O-RAN: Architecture, Interfaces, Algorithms, Security, and Research Challenges”, IEEE Communications Surveys & Tutorials, tom 25, nr 2, str. 1376-1411, drugi kwartał 2023, doi: 10.1109/COMST.2023.3239220
- [20] https://openwifi.tip.build/openwifi-stack/openwifi-stack (dostęp 28 czerwca 2023)
- [21] N. Hosseinidehaj, Z. Babar, R. Malaney, S. X. Ng, L. Hanzo, “Satellite-Based Continuous-Variable Quantum Communications: State-of-he-Art and a Predictive Outlook”, IEEE Communications Surveys & Tutorials, tom 21, nr 1, str. 881-919, pierwszy kwartał 2019.doi: 10.1109/COMST.2018.2864557
- [22] A. S. Cacciapuoti, M. Caleffi, R. Van Meter, L. Hanzo, “When Entanglement Meets Classical Communications: Quantum Teleportation for the Quantum Internet”, IEEE Transactions on Communications, tom 68, nr 6, str. 3808-3833, czerwiec 2020, doi: 10.1109/TCOMM.2020.2978071
- [23] P. Porambage, G. Gür, D. P. M. Osorio, M. Liyanage, A. Gurtov, M. Ylianttila, “The Roadmap to 6G Security and Privacy”, IEEE Open Journal of the Communications Society, tom 2, str. 1094-1122, 2021, doi: 10.1109/OJCOMS.2021.3078081.
- [24] W. Yuan et al., “New delay Doppler communication paradigm in 6G era: A survey of orthogonal time frequency space (OTFS)”, China Communications, tom 20, nr 6, str. 1-25, czerwiec 2023, doi: 10.23919/JCC.fa.2022-0578.202306
- [25] A. Liu et al., “A Survey on Fundamental Limits of Integrated Sensing and Communication”, IEEE Communications Surveys & Tutorials, tom 24, nr 2, str. 994-1034, drugi kwartał 2022, doi: 10.1109/COMST.2022.3149272
- [26] G. Liu, F. R. Yu, H. Ji, V. C. M. Leung, X. Li, “In-Band Full-Duplex Relaying: A Survey, Research Issues and Challenges”, IEEE Communications Surveys & Tutorials, tom 17, nr 2, str. 500-524, drugi kwartał 2015, doi: 10.1109/COMST.2015.2394324
- [27] A. O. Boryssenko, J. Liao, J. Zeng, S. Deng, V. M. Joyner, Z. R. Huang, “Radio-Optical Dual-Mode Communication Modules Integrated With Planar Antennas”, IEEE Transactions on Microwave Theory and Techniques, tom 58, nr 2, str. 403-410, luty 2010, doi: 10.1109/TMTT.2009.2038441
- [28] M. S. Saud, H. Chowdhury, M. Katz, “Heterogeneous Software-Defined Networks: Implementation of a Hybrid Radio-Optical Wireless Network”, 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, CA, USA, 2017, str. 1-6., doi: 10.1109/WCNC.2017.7925873
- [29] M. Kashef, M. Abdallah, N. Al-Dhahir, “Transmit Power Optimization for a Hybrid PLC/VLC/RF Communication System”, IEEE Transactions on Green Communications and Networking, tom 2, nr 1, str. 234-245, marzec 2018, doi: 10.1109/TGCN.2017.2774104
- [30] W. Liu, J. Ding, J. Zheng, X. Chen, C.-L. I, “Relay-Assisted Technology in Optical Wireless Communications: A Survey”, IEEE Access, tom 8, str. 194384-194409, 2020, doi: 10.1109/ACCESS.2020.3031288
- [31] Y. Liu et al., “Reconfigurable Intelligent Surfaces: Principles and Opportunities”, IEEE Communications Surveys & Tutorials, tom 23, nr 3, str. 1546-1577, trzeci kwartał 2021., doi: 10.1109/COMST.2021.3077737
- [32] Z. Ding et al., “A State-of-the-Art Survey on Reconfigurable Intelligent Surface-Assisted Non-Orthogonal Multiple Access Networks”, Proceedings of the IEEE, tom 110, nr 9, str. 1358-1379, wrzesień 2022, doi: 10.1109/JPROC.2022.3174140
- [33] A. C. Pogaku, D. -T. Do, B. M. Lee, N. D. Nguyen, “UAV-Assisted RIS for Future Wireless Communications: A Survey on Optimization and Performance Analysis”, IEEE Access, tom 10, str. 16320-16336, 2022, doi: 10.1109/ACCESS.2022.3149054
- [34] R. Deng et al., “Reconfigurable Holographic Surfaces for Future Wireless Communications”, IEEE Wireless Communications, tom 28, nr 6, str. 126-131, grudzień 2021, doi: 10.1109/MWC.001.2100204
- [35] R. Deng, Y. Zhang, H. Zhang, B. Di, H. Zhang, L. Song, “Reconfigurable Holographic Surface: A New Paradigm to Implement Holographic Radio”, IEEE Vehicular Technology Magazine, tom 18, nr 1, str. 20-28, marzec 2023, doi: 10.1109/MVT.2022.3233157
- [36] C. Huang et al., “Holographic MIMO Surfaces for 6G Wireless Networks: Opportunities, Challenges, and Trends”, IEEE Wireless Communications, tom 27, nr 5, str. 118-125, październik 2020, doi: 10.1109/MWC.001.1900534
- [37] Vladan Jevremovic, „Metamaterials and Reconfigurable Intelligent Surfaces”, White paper, iBwave, dostęp online, (dostęp 28 czerwca 2023 r.)
- [38] B. Ziętek, “Optoelektronika”, 2011, Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika; Uzupełnienia do rozdziału IV.4.5, ISBN: 978-83-231-2746-8; dostęp online: http://fizyka.umk.pl/bezet/ uzupelnienia_opto.html (dostęp 28 czerwca 2023 r.)
- [39] J. Franklin, J. Biddle, B. Balko „Double negative materials (DNM), Phenomena and Applications”, IDA Document D-3887, 2009
- [40] B. A. F. Esmail, S. Koziel, L. Golunski, H. B. A. Majid, R. K. Barik, “Overview of Metamaterials-Integrated Antennas for Beam Manipulation Applications: The Two Decades of Progress”, IEEE Access, tom 10, str. 67096-67116, 2022, doi: 10.1109/ACCESS.2022. 3185260.
- [41] C. Liaskos, A. Tsioliaridou, A. Pitsillides, N. Kantartzis, A. Lalas, X. Dimitropoulos, S. Ioannidis, M. Kafesaki, C. Soukouli „Building Software Defined Materials with Source Nanonetworks”, dostęp online: https://www.academia.edu/31120212/Building_Software_Defined_Materials_with_Nanonetworks (dostęp 28 czerwca 2023 r.)
- [42] D. Manessis et al., “High Frequency Substrate Technologies for the Realisation of Software Programmable Metasurfaces on PCB Hardware Platforms with Integrated Controller Nodes”, 2019 22nd European Microelectronics and Packaging Conference & Exhibition (EMPC), Piza, Włochy, 2019, str. 1-7, doi: 10.23919/ EMPC44848.2019.8951834.
- [43] K.-K. Wong, K. -F. Tong, Z. Chu, Y. Zhang, “A Vision to Smart Radio Environment: Surface Wave Communication Superhighways”, IEEE Wireless Communications, tom 28, nr 1, str. 112-119, luty 2021, doi: 10.1109/MWC.001.2000162.
- [44] Ali, A.; Mitra, A.; Aïssa, B. Metamaterials and Metasurfaces: A Review from the Perspectives of Materials, Mechanisms and Advanced Metadevices. Nanomaterials, 2022, 12, 1027. https://doi.org/Source 10.3390/nano12061027
- [45] Renzo, M.D., Debbah, M., Phan-Huy, D. et al. Smart radio environments empowered by reconfigurable AI meta-surfaces: an idea whose time has come. J Wireless Com Network 2019, 129 (2019). https://doi.org/10.1186/s13638-019-1438-9
- [46] ETSI GR RIS 001 V1.1.1 (2023-04), “Reconfigurable Intelligent Surfaces (RIS); Use Cases, Deployment Scenarios and Requirements”, https://www.etsi.org/committee/1966-ris, dostęp online: 28 czerwca 2023 r.
- [47] ETSI GR RIS 003 V1.1.1 (2023-06), “Reconfigurable Intelligent Surfaces (RIS); Communication Models, Channel Models, Channel Estimation and Evaluation Methodology”, https://www.etsi.org/committee/1966-ris, dostęp online: 28 czerwca 2023 r.
- [48] H. Zhang, B. Di, “Intelligent Omni-Surfaces: Simultaneous Refraction and Reflection for Full-Dimensional Wireless Communications”, IEEE Communications Surveys & Tutorials, tom 24, nr 4, str. 1997-2028, czwarty kwartał 2022, doi: 10.1109/COMST.2022.3202813.
- [49] R. Liu, J. Dou, P. Li, J. Wu, Y. Cui, “Simulation and Field Trial Results of Reconfigurable Intelligent Surfaces in 5G Networks”, IEEE Access, tom 10, str. 122786-122795, 2022, doi: 10.1109/ ACCESS.2022.3223447.
- [50] Wankai Tang, Xiang Li, Jun Yan Dai, Shi Jin, Yong Zeng, Qiang Cheng, Tie Jun Cui. Wireless Communications with Programmable Metasurface: Transceiver Design and Experimental Results. China Communications. 2019, 16(5): 46-61
- [51] D. Dardari, N. Decarli, “Holographic Communication Using Intelligent Surfaces”, IEEE Communications Magazine, tom 59, nr 6, str. 35-41, czerwiec 2021, doi: 10.1109/MCOM.001.2001156.
- [52] Tierui Gong, Panagiotis Gavriilidis, Ran Ji, Chongwen Huang, George C. Alexandropoulos, Li Wei, Zhaoyang Zhang, Mérouane Debbah, H. Vincent Poor, Chau Yuen, “Holographic MIMO Communications: Theoretical Foundations, Enabling Technologies, and Future Directions”, https://arxiv.org/abs/2212.01257, https://doi. org/10.48550/arXiv.2212.01257
- [53] C. Huang et al., “Holographic MIMO Surfaces for 6G Wireless Networks: Opportunities, Challenges, and Trends”, IEEE Wireless Communications, doi: 10.1109/MWC.001.1900534
- [54] Rajatheva, N., Atzeni, I., Björnson, E., Bourdoux, A., Buzzi, S., Doré, J.-B., Erkucuk, S., Fuentes, M., Guan, K., Hu, Y., Huang, X. , Hulkkonen, J., Jornet, J. M., Katz, M., Nilsson, R., Panayirci, E., Rabie, K., Rajapaksha, N., Salehi, M., Xu, W. (2020). White Paper on Broadband Connectivity in 6G [White paper]. (6G Research Visions, Nr 10). University of Oulu. http://urn.fi/ urn:isbn:9789526226798
- [55] R. Deng et al., “Reconfigurable Holographic Surfaces for Future Wireless Communications”, IEEE Wireless Communications, tom 28, nr 6, str. 126-131, grudzień 2021, doi: 10.1109/MWC.001.2100204.
- [56] Z. Yang, Y. Hu, Z. Zhang, W. Xu, C. Zhong, K. -K. Wong, “Reconfigurable Intelligent Surface Based Orbital Angular Momentum: Architecture, Opportunities, and Challenges”, IEEE Wireless Communications, tom 28, nr 6, str. 132-137, grudzień 2021, doi: 10.1109/MWC.001.2100223.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c90b47d8-f84f-4b26-87b9-8625a4242def