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Abstract. In this paper, we present the existence and uniqueness of random solution of
a random integral equation of Volterra type on time scales. We also study the asymptotic
properties of the unique random solution.
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1. INTRODUCTION

The random integral equations of Volterra type, as a natural extension of deterministic
ones, arise in many applications and have been investigated by many mathematicians.
For details, the reader may see the monograph [22, 27], the papers [7, 12, 21, 26] and
references therein. For the general theory of integral equations see, the monographs
[8,11] and references therein. In recent years, it initiated the study of integral equations
on time scales and obtained some significant results see [1, 16, 19, 25]. The stochastic
differential equations on time scales was first studied by Sanyal in his Ph.D. Thesis
[24]. For other results about stochastic processes see [23].

The aim of this paper is to obtain the general conditions which ensure the existence
and uniqueness of a random solution of a random integral equation of Volterra type
on time scales and to investigate the asymptotic behavior of such a random solution.
The paper is organized as follows: in Section 2 we set up the appropriate framework
on random processes on time scales. We also introduce some functional spaces within
which the study of random integral equations can be developed. In Section 3 we
present the existence and uniqueness of random solutions. Finally, we establish an
asymptotic stability result.
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2. PRELIMINARIES

A time scale T is an arbitrary nonempty closed subset of the real number R. Then the
time scale T is a complete metric space with the usual metric on R. Since a time scale
T may or may not be connected, we need the concept of jump operators. The forward
(backward) jump operator σ(t) at t ∈ T for t < supT (respectively ρ(t) for t > inf T)
is given by σ(t) = inf{s ∈ T : s > t} (respectively ρ(t) = sup{s ∈ T : s < t})
for all t ∈ T. If σ(t) > t, t ∈ T, we say t is right scattered. If ρ(t) < t, t ∈ T,
we say t is left scattered. If σ(t) = t, t ∈ T, we say t is right-dense. If ρ(t) = t,
t ∈ T, we say t is left-dense. Also, define the graininess function µ : T → [0,∞) as
µ(t) := σ(t)− t. We recall that a function f : T→ R is called rd-continuous function
if f is continuous at every right-dense point t ∈ T, and lims→t− f(s) exists and is
finite at every left-dense point t ∈ T. We remark that every rd-continuous function
is Lebesgue ∆-integrable (see [14]). A rd-continuous function f : T → R is called
positively regressive if 1 + µ(t)f(t) > 0 for all t ∈ T. We will denote by R+ the set of
all positively regressive functions. In the following, assume that T is unbounded. With-
out lost the generality, assume that 0 ∈ T and let T0 = [0,∞) ∩ T. Also, assume that
there exists a strictly increasing sequence (tn)n of elements of T0 such that tn → ∞
as n → ∞. Denote by L the σ-algebra of ∆-measurable subsets of T0 and by λ the
Lebesgue ∆-measure of L. Having the measure space (T0,L, λ) one can introduce the
Lebesgue-Bochner integral for functions from T0 to a Banach space by simply employ-
ing the standard procedure from measure theory (see [3,18]). The Lebesgue-Bochner
integral for functions from T0 to a Banach space was introduced by Neidhart in
[18] and the Henstock-Kurzweil-Pettis integral was introduced by Cichoń in [10]. For
details on the construction of the Lebesgue integral for real functions defined on a
time scale, see [2,4,5,9,14,15]. Further, let (Ω,A, P ) be a complete probability space.
A function x : Ω → R is called a random variable if {ω ∈ Ω : x(Ω) < a} ∈ A for all
a ∈ R. Let 1 ≤ p < ∞. A random variable x : Ω→ R is said to be p-integrable if∫

Ω
|x(ω)|p dP (ω) < ∞. Let Lp(Ω) be the space of all p-integrable random variables.

Then Lp(Ω) is a vector space and the function x 7→ ‖x‖Lp(Ω) defined by

‖x‖Lp(Ω) =

∫
Ω

|x(ω)|p dP (ω)

1/p

is a seminorm on Lp(Ω). If x ∈ L1(Ω), then

E[x] :=

∫
Ω

x(ω)dP (ω)

is called the expected value of random variable x. A random variable x is called a
P -essentially bounded if there exists a M > 0 and A ∈ A with P (A) = 0 such that
|x(ω)| ≤ M for all ω ∈ Ω \ A. Let L∞(Ω) be the space of all P -essentially bounded
random variables. Then

‖x‖L∞(Ω) = P - ess sup
ω∈Ω

|x(ω)|
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is a seminorm on L∞(Ω), where

P - ess sup
ω∈Ω

|x(ω)| := inf{M > 0 : |x(ω)| ≤M P -a.e. ω ∈ Ω}.

When a random variable x is p-integrable or P -essentially bounded it is convenient
to use notation x̂ to denote the equivalent class of random variables which coincide
with x for P -a.e. ω ∈ Ω. Let us denote by Lp(Ω) the space of all equivalence classes
of random variables that are p-integrable and by L∞(Ω) the space of all equivalence
classes of random variables that are P -essentially bounded. If x ∈ Lp(Ω), 1 ≤ p ≤ ∞,
we denote by x̂ its equivalence class, that is, y ∈ x̂ if and only if y(ω) = x(ω) for
P -a.e. ω ∈ Ω. Moreover, we have that ‖y‖Lp(Ω) = ‖x‖Lp(Ω) . Thus we can define a
norm ‖·‖Lp(Ω) on Lp(Ω) by means of the formula ‖x̂‖Lp(Ω) = ‖x‖Lp(Ω), 1 ≤ p ≤ ∞.
Then Lp(Ω), 1 ≤ p ≤ ∞, is a Banach space with respect to the norm ‖·‖Lp(Ω) .

Since, for 1 ≤ p ≤ ∞, Lp(Ω) is a Banach space, then all elementary properties
of the calculus (such as continuity, differentiability, and integrability) for abstract
functions defined on a subset of T with values into a Banach space remain also true
for the functions defined a subset of T with values into Lp(Ω), 1 ≤ p ≤ ∞.

Thereby, if X : T0 → Lp(Ω) is strongly measurable then the function
t 7→ ‖X(t)‖Lp(Ω) is Lebesgue measurable on T0. Also, a strongly measurable func-
tion X : T0 → Lp(Ω) is Bochner ∆-integrable on T0 if and only if the function
t 7→ ‖X(t)‖Lp(Ω) is Lebesgue ∆-integrable on T0 (see [3]).

Let 1 ≤ p ≤ ∞. A function X : T0 → Lp(Ω) is called rd-continuous function if X
is continuous at every right-dense point t ∈ T0, and lims→t− X(s) exists in Lp(Ω) at
every left-dense point t ∈ T0.

Of particular importance is the fact that every rd-continuous function
X : T0 → Lp(Ω) is Bochner ∆-integrable on T0 (see [3, Theorem 6.3]).

If X : T0 → Lp(Ω) is a strongly measurable function then for each fixed t ∈ T0,
X(t) ∈ Lp(Ω) is an equivalence class. If for each t ∈ T0 we select a particular function
x(t, ·) ∈ X(t) then we obtain a function x(·, ·) : T0 × Ω→ R such that ω 7→ x(t, ω) is
a random variable for each t ∈ T0. This resulting function is called a representation
of X. In fact, such a representation is so called a random process. However, is not
immediate that this representation function is even a L ×A-measurable function. In
this sense, we have the following result.

Lemma 2.1. (a) ([13, Theorem III.11.17 ]). Let (T0 × Ω,L × A, λ × P ) be the
product space of the measure space (T0,L, λ) and (Ω,A, P ). Let 1 ≤ p ≤ ∞ and
let X : T0 → Lp(Ω) be a Bochner ∆-integrable function. Then there exists a
L × A-measurable function x(·, ·) : T0 × Ω → R which is uniquely determined except
a set of λ × P -measure zero, such that x̂(t, ·) = X(t) for λ-a.e. t ∈ T0. Moreover,
x(·, ω) is Lebesgue ∆-integrable on T0 for P - a.e. ω ∈ Ω and integral

∫
T0
x(t, ω)∆t,

as a function of ω, is equal to the element
∫
T0
X(t)∆t of Lp(Ω), that is,

∫
T0

x(t, ·)∆t =

∫
T0

X(t)∆t

 (·).
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(b) ([13, Lemma III.11.16]). Let 1 ≤ p < ∞ and let x(·, ·) : T0 × Ω → R be a
L × A-measurable function such that x(t, ·) ∈ Lp(Ω) for λ-a.e. t ∈ T0. Then the
function X : T0 → Lp(Ω), defined by X(t) = x̂(t, ·), is strongly measurable on T0.

A L × A-measurable function x(·, ·) : T0 × Ω → R will be called a measurable
random process.

Remark 2.2. Let x(·, ·) : T0 × Ω → R be a measurable random process such that,
for each fixed t ∈ T0, x(t, ·) ∈ Lp(Ω). If we denote x̂(t, ·) by X(t), then X(t) : Ω→ R
is a random variable such that X(t) ∈ Lp(Ω) and x(t, ω) = X(t)(ω) for P -a.e. ω ∈ Ω.
In the following, using a common abuse of notation in measure theory, we will denote
x(t, ·) by X(t) for each fixed t ∈ T0. In this way, a measurable random process
x(·, ·) : T0 × Ω → R such that x(t, ·) ∈ Lp(Ω) for all t ∈ T0 can be identified with a
strongly measurable function X : T0 → Lp(Ω).

Let us denote by Cc = C(T0, L
p(Ω)) the space of continuous functions

X : T0 → Lp(Ω) with the compact open topology. We recall that if K is a compact
subset of T0 and U is an open subset of Lp(Ω) and we put

S(K,U) = {X : K → Lp(Ω) |X(K) ⊂ U} ,

then the sets

S(K1, . . . ,Kn;U1, . . . , Un) =

n⋂
i=1

S(Ki, Ui),

where n ∈ N, form a basis for the compact open topology. In fact, this topology
coincides with the topology of uniform convergence on any compact subset of T0. The
space Cc is a locally convex space [28] whose topology is defined by means of the
following family of seminorms:

‖X‖n = sup
t∈Kn

‖X(t)‖Lp(Ω) ,

where Kn = [0, tn] ⊂ T0, n ∈ N and (tn)n is a strictly increasing sequence of elements
of T0 such that tn →∞ as n→∞.

A distance function can be defined on Cc by

dc (X,Y ) =

∞∑
n=1

1

2n

‖X − Y ‖Lp(Ω)

1 + ‖X − Y ‖Lp(Ω)

.

The topology induced by this distance function is the same topology of uniform
convergence on any compact subset of T0.

Further, consider a continuous function g : T0 → (0,∞). By Cg = Cg(T0, L
p(Ω))

we denote the space of all continuous functions from T0 into Lp(Ω) such that

sup
t∈T0

{
‖X(t)‖Lp(Ω)

g(t)
: t ∈ T0

}
<∞.
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Then

‖X‖Cg := sup
t∈T0

‖X(t)‖Lp(Ω)

g(t)
(2.1)

is a norm of Cg.

Lemma 2.3. (Cg, ‖·‖Cg ) is a Banach space.

Proof. Let (Xn) be a Cauchy sequence in Cg. Then for each ε > 0 there exists a
N = N(ε) > 0 such that ‖Xn −X‖Cg < ε for all n,m ≥ N . Hence, by (2.1), it
follows that

‖Xn(t)−Xm(t)‖Lp(Ω) < εg(t), (2.2)

for all t ∈ T0 and n,m ≥ N . Since Lp(Ω) is a complete metric space, it follows
that, for any fixed t ∈ T0, (Xn(t)) is a convergent sequence in Lp(Ω). Therefore, for
any fixed t ∈ T0, there exists X(t) ∈ Lp(Ω) such that X(t) = lim

n→∞
Xn(t) in Lp(Ω).

Moreover, it follows from (2.2) that X(t) = lim
n→∞

Xn(t) in Lp(Ω), uniformly on any
compact subset of T0. Hence, X is a continuous function from T0 into Lp(Ω). Further,
we show that X ∈ Cg. Let us keep n fixed and take m→∞ in (2.2). Then we obtain
that Xn −X ∈ Cg for all n ≥ N . Since X = (X −Xn) +Xn and X −Xn, Xn ∈ Cg,
it follows that X ∈ Cg.

Remark 2.4. The topology of Cg is stronger than the topology of Cc. Indeed, if
Xn → X in Cg as n → ∞, then for each ε > 0 there exists N = N(ε) > 0 such that
‖Xn(t)−X(t)‖Lp(Ω) < εg(t), for all t ∈ T0 and n ≥ N(ε). Since g is bounded on
any compact subset of T0, it allows that Xn(t)→ X(t) as n→∞, uniformly on any
compact subset of T0. In other words, convergence in Cg implies convergence in Cc.
If g(t) = 1 on T0, then Cg becomes the space C = C(T0, L

p(Ω)) of all continuous and
bounded functions from T0 into Lp(Ω). The norm on C is given by

‖X‖c = sup
t∈T0

‖X(t)‖Lp(Ω) .

Note that the following inclusions hold C ⊂ Cg ⊂ Cc.

Let (B,D) be a pair of Banach spaces such that B,D ⊂ Cc and let T be a linear
operator from Cc to itself. The pair of Banach spaces (B,D) is called admissible with
respect to the operator T : Cc → Cc if T (B) ⊂ D ([13]).

Remark 2.5. If the pair (B,D) is admissible with respect to the linear operator
T : Cc → Cc then, by Lemma 2.1.1 from [21], it follows that T is a continuous
operator from B to D. Therefore, there exists a M > 0 such that

‖T X‖D ≤M ‖X‖B , X ∈ B.



328 Vasile Lupulescu and Cristina Lungan

3. RANDOM INTEGRAL EQUATION OF VOLTERRA TYPE

In this section we study the existence and uniqueness of a random solution of a random
integral equation of Volterra type.

x(t, ω) = h(t, ω) + λ

t∫
t0

k(t, s, ω)f(s, x(s, ω), ω)∆s, t ∈ T0, (3.1)

where P -a.e. ω ∈ Ω, x(·, ·) : T0 × Ω → R is the unknown random process,
h : T0 × Ω→ R is a measurable random process, f : T0 × R × Ω → R is a
random function, k : Γ × Ω → R is the random kernel, λ ∈ R∗, and Γ :=
{(t, s) ∈ T0 × T0 : t0 ≤ s ≤ t <∞}.

In what follows, we will use the notations X(t) = x(t, ·), H(t) = h(t, ·),
K(t, s) = k(t, s, ·), F (t,X(t)) = f(t, x(t, ·), ·).

Let us consider the following assumptions:

(h1) K(t, s) ∈ L∞(Ω) for all (t, s) ∈ Γ, K(·, ·) : Γ → L∞(Ω) continuous in its first
variable and rd-continuous in its second variable, there exists k0 > 0 and α > 0
with −α ∈ R+ such that

‖K(t, s)‖L∞(Ω) ≤ k0e−α(t, σ(s))

for (t, s) ∈ Γ.
(h2) f(·, x, ·) : T0 × Ω → R is a L × A-measurable function for each x ∈ R, and

there exist an a > 0 and a positive random variable L : Ω → R such that
P ({ω ∈ Ω: L(ω) > a}) = 0 and

|f(t, x, ω)− f(t, y, ω)| ≤ L(ω) |x− y|

for all t ∈ T0 and x, y ∈ R.
(h3) F (t, 0) ∈ Lp(Ω) for all t ∈ T0 and there exists β ∈ (0, α) with −β ∈ R+ such

that

r := sup
t∈T0

‖F (t, 0)‖Lp(Ω)

e−β(t, 0)
<∞.

In what follows, consider g(t) := e−β(t, 0), t ∈ T0, where 0 < β < α. Also, we will
use the notation Cβ instead of Cg.

Lemma 3.1. If (h2) and (h3) hold, then

sup
t∈T0

‖F (t,X(t))‖Lp(Ω)

e−β(t, 0)
≤ a ‖X‖Cβ + r <∞ (3.2)

for every X ∈ Cβ, and

‖F (t,X(t))− F (t, Y (t))‖Lp(Ω) ≤ a ‖X(t)− Y (t)‖Lp(Ω) (3.3)

for all t ∈ T0 and X,Y ∈ Cβ.
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Proof. If we denote {ω ∈ Ω: L(ω) ≤ a} by Ωa, then from (h2) we have that P (Ωa) = 1.
If X,Y ∈ Cβ , using the Minkowski’s inequality, (h2) and (h3), we have

‖F (t,X(t))‖Lp(Ω) = ‖f(t, x(t, ·), ·)‖Lp(Ω) ≤

≤

(∫
Ω

|f(t, x(t, ω), ω)− f(t, 0, ω)|p dP (ω)

)1/p

+

(∫
Ω

|f(t, 0, ω)|p dP (ω)

)1/p

≤

≤

( ∫
Ωa

|L(ω)|p |x(t, ω)|p dP (ω)

)1/p

+ ‖F (t, 0)‖Lp(Ω) ≤

≤ a ‖X(t)‖Lp(Ω) + ‖F (t, 0)‖Lp(Ω) .

Dividing both sides of the last inequality by e−β(t, 0) > 0 and taking the supremum
with respect to t ∈ T0, we obtain (3.2). Also,

‖F (t,X(t))− F (t,X(t))‖Lp(Ω) = ‖f(t, x(t, ·), ·)− f(t, y(t, ·), ·)‖Lp(Ω) =

=

(∫
Ω

|f(t, x(t, ω), ω)− f(t, y(t, ω), ω)|p dP (ω)

)1/p

≤

≤

( ∫
Ωa

|L(ω)|p |x(s, ω)− y(s, ω)|p dP (ω)

)1/p

≤ a ‖X(t)− Y (t)‖Lp(Ω) .

Remark 3.2. It follows from Lemma 3.1 that F (t,X(t)) ∈ Lp(Ω) for all t ∈ T0 and
X ∈ Cβ . Moreover, (3.2) implies that the function t 7→ F (t,X(t)) belong to Cβ for
all X ∈ Cβ .

Lemma 3.3. Let us consider the integral operator T : Cc → Cc defined by

(T X)(t) =

t∫
0

K(t, s)X(s)∆s, t ∈ T0. (3.4)

If (h1) holds, then T (Cβ) ⊂ Cβ.

Proof. Let X ∈ Cβ . We have that

‖(T X)(t)‖Lp(Ω) ≤
t∫

0

‖K(t, s)X(s)‖Lp(Ω) ∆s ≤
t∫

0

‖K(t, s)‖L∞(Ω) ‖X(s)‖Lp(Ω) ∆s =

=

t∫
0

‖K(t, s)‖L∞(Ω)

‖X(s)‖Lp(Ω)

e−β(s, 0)
e−β(s, 0)∆s ≤

≤ ‖X‖Cβ

t∫
0

‖K(t, s)‖L∞(Ω) e−β(s, 0)∆s.
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Take into account (h1), we infer that

t∫
0

‖K(t, s)‖L∞(Ω) e−β(s, 0)∆s ≤ k0

t∫
0

e−α(t, σ(s))e−β(s, 0)∆s =

=
k0

α− β
[e−β(t, 0)− e−α(t, 0)].

Since −α,−β ∈ R+ and −α < −β, then (see [6, Corollary 2.10]) we have that
e−β(t, 0) > e−α(t, 0), t ∈ T0, and it follows that

t∫
0

‖K(t, s)‖L∞(Ω) e−β(s, 0)∆s ≤ k0

α− β
e−β(t, 0), t ∈ T0. (3.5)

Consequently,

‖(T X)(t)‖Lp(Ω) ≤
k0

α− β
‖X‖Cβ e−β(t, 0), t ∈ T0,

and thus T X ∈ Cβ for every X ∈ Cβ , that is, T (Cβ) ⊂ Cβ .

Remark 3.4. Since, by Lemma 3.3, the pair (Cβ , Cβ) is admissible with respect to
the linear operator T : Cc → Cc then, by Remark 2.5, it follows that T is a continuous
operator from Cβ to Cβ . Therefore, there exists a M > 0 such that

‖T X‖Cβ ≤M ‖X‖Cβ , X ∈ Cβ .

In fact, it easy to see that M = k0
α−β is the norm of T as a linear operator from Cβ

into Cβ .

A solution X ∈ Cβ of the integral equation (3.1) is called asymptotically exponen-
tially stable if there exists a ρ > 0 and a β > 0 such that −β ∈ R+ and

‖X(t)‖Lp(Ω) ≤ ρe−β(t, 0), t ∈ T0.

Remark 3.5. The admissibility concept is related to stability in various senses (see
[17]). Let T : Cc → Cc be a linear operator. Roughly speaking we say that the pair
of function spaces B,D ⊂ Cc is admissible with respect to the equation

X = H + T X, (3.6)

if this equation has its solution in the space D, for each H ∈ D. Therefore, if we
choose D = Cβ and if X ∈ Cβ is a solution of the equation (3.6), then there exists a
ρ > 0 such that ‖X‖Cβ ≤ ρ. Using (2.1) we infer that

‖X(t)‖Lp(Ω) ≤ ρe−β(t, 0)

for all t ∈ T0, that is, the solution of the equation (3.6) is asymptotically exponentially
stable. For several results concerning the admissibility theory for Volterra integral
equations see [11].
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These preliminaries being completed, we shall state the following result.

Theorem 3.6. If the assumptions (h1)–(h3) hold and H ∈ Cβ, then the integral
equation (3.1) has a unique asymptotically exponentially stable solution, provided that
|λ| aM < 1, where M > 0 is the norm of the operator T .

Proof. Let us consider the operator V : Cβ → Cc defined by

(VX)(t) = H(t) + λ

t∫
0

K(t, s)F (s,X(s))∆s, t ∈ T0. (3.7)

Then we can rewrite the operator V as

(VX)(t) = H(t) + λ(T G)(t), t ∈ T0, (3.8)

where G(t) := F (t,X(t)), t ∈ T0 and T is the operator given by (3.4). Since by
Remark 3.2 and Lemma 3.1 we have that ‖G‖Cβ ≤ a ‖X‖Cβ + r, then

‖(T G)(t)‖Lp(Ω) ≤ bMe−β(t, 0), t ∈ T0, (3.9)

where b := a ‖X‖Cβ + r. From (3.8) and (3.9) we obtain that

‖(VX)(t)‖Lp(Ω) ≤ ‖H(t)‖Lp(Ω) + b |λ|Me−β(t, 0),

for all t ∈ T0. Dividing both sides of the last inequality by e−β(t, 0) > 0 and taking
the supremum with respect to t ∈ T0, it follows that

‖VX‖Cβ ≤ ‖H‖Cβ + b |λ|M, (3.10)

and so VX ∈ Cβ for all X ∈ Cβ . Further, we show that the operator V is a contraction
on Cβ . Indeed, using (3.3) and (3.5), we have

‖(VX)(t)− (VY )(t)‖Lp(Ω) ≤ |λ|
t∫

0

‖K(t, s)[F (s,X(s))− F (s, Y (s))]‖Lp(Ω)∆s ≤

≤ |λ|
t∫

0

‖K(t, s)‖L∞(Ω)‖F (s,X(s))−F (s, Y (s))‖Lp(Ω)∆s ≤

≤ a |λ|
t∫

0

‖K(t, s)‖L∞(Ω)

‖X(s)−Y (s)‖Lp(Ω)

e−β(s, 0)
e−β(s, 0)∆s≤

≤ a |λ| ‖X − Y ‖Cβ

t∫
0

‖K(t, s)‖L∞(Ω) e−β(s, 0)∆s ≤

≤ a |λ| k0

α− β
‖X − Y ‖Cβ e−β(t, 0) =

= a |λ|M ‖X − Y ‖Cβ e−β(t, 0).
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Thus
‖(VX)(t)− (VY )(t)‖Lp(Ω) ≤ a |λ|M ‖X − Y ‖Cβ

for all t ∈ T0, and so

‖VX − VY ‖Cβ ≤ a |λ|M ‖X − Y ‖Cβ ,

with a |λ|M < 1, that is, V is a contraction on Cβ . From Banach’s Fixed Point
Theorem, it follows that there exist a unique solution X ∈ Cβ of the integral equation
(3.1). From Remark 3.5, we infer that the solution is asymptotically exponentially
stable.

Corollary 3.7. If all the hypotheses of Theorem 3.6 hold for β = 0, then the integral
equation (3.1) has a unique solution X ∈ C.

Corollary 3.8. If all the hypotheses of Theorem 3.6, then the solution of the integral
equation (3.1) is asymptotically stable in mean, that is, E[|X(t)|]→ 0 as t→∞.

Proof. Since −β < 0, then e−β(t, 0) decreases monotonically towards zero as t→∞,
and therefore ‖X(t)‖Lp(Ω) → 0 as t→∞. Since E[|X(t)|p] = ‖X(t)‖pLp(Ω) then, using
the Jensen’s inequality, we infer that E[|X(t)|]→ 0 as t→∞.

Remark 3.9. Let T0 = [0,∞). Then, for g(t) = q(t) = e−βt, t ≥ 0, we obtain
Theorem 2.2 from [7]. For p = 2 and f(t, x, ω) = f(t, x), we obtain Theorem 3.1 from
[26]. Let T0 = N. Then, for p = 2 and f(t, x, ω) = f(t, x), we obtain Theorem 5.3.1
from [27].

In what follows, using the concept of admissibility, we prove a general result of the
existence and uniqueness for the integral equation (3.1). From this result it is possible
to derive many existence results, by particularizing the spaces B and D.

Let us consider the integral equation (3.1) under the following conditions:

(h̃1) K(t, s) ∈ L∞(Ω) for all (t, s) ∈ Γ, K(·, ·) : Γ → L∞(Ω) continuous in its first
variable and rd-continuous in its second variable.

(h̃2) B,D ⊂ Cc are Banach spaces stronger than Cc such that the pair (B,D) is
admissible with respect to the linear operator T : Cc → Cc defined by (3.4).

(h̃3) For each X ∈ D, the function t 7→ F (t,X(t)) belong to B, and the operator
G : D → B, defined by (GX)(t) = F (t,X(t)) for all t ∈ T0, satisfies the Lipschitz
condition

‖GX − GY ‖B ≤ a ‖X − Y ‖D

for all X,Y ∈ D and some a > 0.

Theorem 3.10. If the assumptions (h̃1)–(h̃3) hold and H ∈ D, then the integral
equation (3.1) has a unique solution X ∈ D, provided that |λ| aM < 1, where M > 0
is the norm of the operator T .
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Proof. Let us consider the operator V : D → Cc defined by VX = H + λT GX. Since
the pair (B,D) is admissible with respect to the linear operator T , it follows from
Remark 2.5 that there exists a M > 0 such that ‖T X‖D ≤ M ‖X‖B for all X ∈ B.
Using (h̃3) and the fact that H ∈ D it follows from Minkowski’s inequality that

‖VX‖D ≤ ‖H‖D + |λ|M ‖GX‖B ≤ ‖H‖D + |λ|M ‖GX − G0‖B + |λ|M ‖G0‖B ≤
≤ ‖H‖D + a |λ|M ‖X‖D + |λ|M ‖G0‖B <∞,

that is, VX ∈ D for all X ∈ D. Next, all X,Y ∈ D we have that VX − VY =
λT (GX − GY ). Obviously, GX − GY ∈ B and VX − VY ∈ D. It follows that

‖VX − VY ‖D ≤ |λ|M ‖GX − GY ‖B ≤ |λ| aM ‖X − Y ‖D ,

with |λ| aM < 1, that is, V is a contraction on D. From Banach’s Fixed Point
Theorem, it follows that there exist a unique solution X ∈ D of the integral equa-
tion (3.1).

Remark 3.11. If T0 = [0,∞), we obtain Theorem 2.4 from [7]. For p = 2 and
f(t, x, ω) = f(t, x), we obtain Theorem 2.1.2 from [27]. If T0 = N, then, for p = 2 and
f(t, x, ω) = f(t, x), we obtain Theorem 5.1.2 from [27].
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