PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Two strongly convergent self-adaptive iterative schemes for solving pseudo-monotone equilibrium problems with applications

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to propose two new modified extragradient methods to solve the pseudo-monotone equilibrium problem in a real Hilbert space with the Lipschitz-type condition. The iterative schemes use a new step size rule that is updated on each iteration based on the value of previous iterations. By using mild conditions on a bi-function, two strong convergence theorems are established. The applications of proposed results are studied to solve variational inequalities and fixed point problems in the setting of real Hilbert spaces. Many numerical experiments have been provided in order to show the algorithmic performance of the proposed methods and compare them with the existing ones.
Wydawca
Rocznik
Strony
280--298
Opis fizyczny
Bibliogr. 41 poz., wykr., tab.
Twórcy
  • Department of Mathematics, Faculty of Science and Technology, Phetchabun Rajabhat University, Phetchabun 67000, Thailand
  • Department of Mathematics, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand
autor
  • Program in Applied Statistics, Department of Mathematics and Computer Science, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, Pathumthani 12110, Thailand
Bibliografia
  • [1] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), 123–145.
  • [2] K. Fan, A minimax inequality and applications, in: O. Shisha (ed.), Inequalities III, Academic Press, New York, 1972.
  • [3] M. Bianchi and S. Schaible, Generalized monotone bifunctions and equilibrium problems, J. Optim. Theory Appl. 90 (1996), no. 1, 31–43.
  • [4] G. Mastroeni, On auxiliary principle for equilibrium problems, in: P. Daniele, F. Giannessi, A. Maugeri (eds), Equilibrium Problems and Variational Models, Nonconvex Optimization and Its Applications, vol. 68, Springer, Boston, MA, 2003, pp. 289–298.
  • [5] G. Bigi, M. Castellani, M. Pappalardo, and M. Passacantando, Existence and solution methods for equilibria, European J. Oper. Res. 227 (2013), 1–11.
  • [6] L. Muu and W. Oettli, Convergence of an adaptive penalty scheme for finding constrained equilibria, Nonlinear Anal. 18 (1992), no. 12, 1159–1166.
  • [7] D. Van Hieu, P. K. Quy, and L. Van Vy, Explicit iterative algorithms for solving equilibrium problems, Calcolo 56 (2019), 11.
  • [8] D. Van Hieu, New inertial algorithm for a class of equilibrium problems, Numer. Algorithms 80 (2019), no. 4, 1413–1436.
  • [9] P. K. Anh and T. N. Hai, Novel self-adaptive algorithms for non-Lipschitz equilibrium problems with applications, J. Global Optim. 73 (2019), no. 3, 637–657.
  • [10] P. N. Anh, T. T. H. Anh, and N. D. Hien, Modified basic projection methods for a class of equilibrium problems, Numer. Algorithms 79 (2018), no. 1, 139–152.
  • [11] H. ur Rehman, P. Kumam, Y. J. Cho, and P. Yordsorn, Weak convergence of explicit extragradient algorithms for solving equilibrium problems, J. Inequal. Appl. 2019 (2019), 282.
  • [12] H. ur Rehman, P. Kumam, A. B. Abubakar, and Y. J. Cho, The extragradient algorithm with inertial effects extended to equilibrium problems, Comp. Appl. Math. 39 (2020), 100.
  • [13] H. ur Rehman, P. Kumam, W. Kumam, M. Shutaywi, and W. Jirakitpuwapat, The inertial sub-gradient extra-gradient method for a class of pseudo-monotone equilibrium problems, Symmetry 12 (2020), no. 3, 463.
  • [14] P. Yordsorn, P. Kumam, H. ur Rehman, and A. H. Ibrahim, A weak convergence self-adaptive method for solving pseudo-monotone equilibrium problems in a real Hilbert space, Mathematics 8 (2020), 1165.
  • [15] P. Yordsorn, P. Kumam, and H. ur Rehman, Modified two-step extragradient method for solving the pseudomonotone equilibrium programming in a real Hilbert space, Carpathian J. Math. 36 (2020), no. 2, 313–330.
  • [16] H. ur Rehman, P. Kumam, I. K. Argyros, W. Deebani, and W. Kumam, Inertial extra-gradient method for solving a family of strongly pseudomonotone equilibrium problems in real Hilbert spaces with application in variational inequality problem, Symmetry 12 (2020), 503.
  • [17] H. ur Rehman, P. Kumam, I. K. Argyros, N. A. Alreshidi, W. Kumam, and W. Jirakitpuwapat, A self-adaptive extra-gradient methods for a family of pseudomonotone equilibrium programming with application in different classes of variational inequality problems, Symmetry 12 (2020), 523.
  • [18] H. ur Rehman, P. Kumam, I. K. Argyros, M. Shutaywi, and Z. Shah, Optimization based methods for solving the equilibrium problems with applications in variational inequality problems and solution of Nash equilibrium models, Mathematics 8 (2020), 822.
  • [19] H. ur Rehman, P. Kumam, M. Shutaywi, N. A. Alreshidi, and W. Kumam, Inertial optimization based two-step methods for solving equilibrium problems with applications in variational inequality problems and growth control equilibrium models, Energies 13 (2020), 3292.
  • [20] J. K. Kim, A. Hussain, and S. Salahuddin, Existence theorems for the generalized relaxed pseudomonotone variational inequalities, Nonlinear Funct. Anal. Appl. 25 (2020), no. 1, 25–34.
  • [21] P. N. Anh, H. T. C. Thach, and J. K. Kim, Proximal-like subgradient methods for solving multi-valued variational inequalities, Nonlinear Funct. Anal. Appl. 25 (2020), no. 3, 437–451.
  • [22] J. K. Kim, Convergence theorems of iterative sequences for generalized equilibrium problems involving strictly pseudo-contractive mappings in Hilbert spaces, J. Comput. Anal. Appl. 18 (2015), no. 3, 454–471.
  • [23] J. K. Kim and P. Majee, Modified Krasnoselski-Mann iterative method for hierarchical fixed point problem and split mixed equilibrium problem, J. Inequal. Appl. 2020 (2020), 227.
  • [24] P. G. Hung and L. D. Muu, The Tikhonov regularization extended to equilibrium problems involving pseudomonotone bifunctions, Nonlinear Anal. 74 (2011), no. 17, 6121–6129.
  • [25] I. V. Konnov, Application of the proximal point method to nonmonotone equilibrium problems, J. Optim. Theory Appl. 119 (2003), 317–333.
  • [26] A. Moudafi, Proximal point algorithm extended to equilibrium problems, J. Nat. Geom. 15 (1999), 91–100.
  • [27] P. R. Oliveira, P. S. M. Santos, and A. N. Silva, A Tikhonov-type regularization for equilibrium problems in Hilbert spaces, J. Math. Anal. Appl. 401 (2013), 336–342.
  • [28] S. D. Flåm and A. S. Antipin, Equilibrium programming using proximal-like algorithms, Math. Programm. 78 (1996), 29–41.
  • [29] D. Q. Tran, M. L. Dung, and V. H. Nguyen, Extragradient algorithms extended to equilibrium problems, Optimization 57 (2008), no. 6, 749–776.
  • [30] G. M. Korpelevich, The extragradient method for finding saddle points and other problems, Matecon 12 (1976), 747–756.
  • [31] S. Wang, Y. Zhang, P. Ping, Y. Cho, and H. Guo, New extragradient methods with non-convex combination for pseudo-monotone equilibrium problems with applications in Hilbert spaces, Filomat 33 (2019), no. 6, 1677–1693.
  • [32] Y. Censor, A. Gibali and S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert spaces, J. Optim. Theory Appl. 148 (2014), no. 2, 318–335.
  • [33] J. V. Tiel, Convex Analysis: An Introductory Text, Wiley, New York, 1984.
  • [34] P. J. Bushell, Uniform convexity, hyperbolic geometry, and nonexpansive mappings, in: Monographs and Textbooks in Pure and Applied Mathematics, vol. 83, Marcel Dekker, Inc., New York, 1984.
  • [35] E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley & Sons, Inc., New York, 1989.
  • [36] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, New York, 2011.
  • [37] H. K. Xu, Another control condition in an iterative method for nonexpansive mappings, Bull. Austral. Math. Soc. 65 (2002), no. 1, 109–113.
  • [38] P. E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal. 16 (2008), no. 7–8, 899–912.
  • [39] F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl. 20 (1967), 197–228.
  • [40] H. ur Rehman, P. Kumam, Y. J. Cho, Y. I. Suleiman, and W. Kumam, Modified Popov’s explicit iterative algorithms for solving pseudomonotone equilibrium problems, Optim. Methods Softw. 36 (2021), no. 1, 82–113.
  • [41] D. V. Hieu, P. K. Anh, and L. D. Muu, Modified hybrid projection methods for finding common solutions to variational inequality problems, Comput. Optim. Appl. 66 (2017), no. 1, 75–96.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c9060b9a-8a91-42d3-9616-ccf65e99e39c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.