Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Machine tools’ feed dynamics are usually limited in order to reduce excitation of machine structure oscillations. Consequently, the potential increase in productivity provided by direct drives, e.g. linear motors, cannot be exploited. The novel approach of the Kinematically Coupled Force Compensation (KCFC) applies a redundant axis configuration combined with the principle of force compensation and thus achieves an increase in feed dynamics while drive reaction forces cancel out each other in the machine base. In this paper, the principle of KCFC is introduced briefly. Subsequently, the basics for the realisation of a highly dynamic KCFC motion system with planar motion are derived and discussed. In order to achieve highest acceleration (> 100 m/s2) and jerk (> 100000 m/s3), a mechatronic system with specially designed components for the mechanical, electrical and control system is required. Thus, the design approach presented in this paper applies lightweight slides, a decoupled guide frame and voice coil motors operated at high frequencies for the pulse width modulation and control loops.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
5--17
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
autor
- TU Dresden, Faculty of Mechanical Science and Engineering, Institute of Mechatronic Engineering, Chair of Machine Tools Development and Adaptive Controls, Dresden, Germany
- Fraunhofer Institute for Machine Tools and Forming Technology IWU, Dresden, Germany
autor
- TU Dresden, Faculty of Mechanical Science and Engineering, Institute of Mechatronic Engineering, Chair of Machine Tools Development and Adaptive Controls, Dresden, Germany
autor
- TU Dresden, Faculty of Mechanical Science and Engineering, Institute of Mechatronic Engineering, Chair of Machine Tools Development and Adaptive Controls, Dresden, Germany
autor
- TU Dresden, Faculty of Mechanical Science and Engineering, Institute of Mechatronic Engineering, Chair of Machine Tools Development and Adaptive Controls, Dresden, Germany
Bibliografia
- [1] PEUKERT C., MERX M., MÜLLER J., IHLENFELDT S., 2017, Flexible coupling of drive and guide elements for parallel-driven feed axes to increase dynamics and accuracy of motion, Journal of Machine Engineering, 17/2, 77–89.
- [2] KOREN Y., LO C.C., 1992, Advanced controllers for feed drives, CIRP Annals, 41/2, 689–698, https://doi.org10.1016/S0007-8506(07)63255-7.
- [3] HIPP K., UHRIG M., HELLMICH A., SCHLEGEL H., NEUGEBAUER R., 2016, Combination of criteria for controller parameterization in the time and frequency domain by simulation-based optimisation, Journal of Machine Engineering, 16/4, 70–81.
- [4] N.N., 2013, Mehr Performance mit Parallelkinematik, Mikroproduktion, 4, 66–68.
- [5] TÜLLMANN U., 2009, Direktantriebe im Einsatz an hochdynamischen Werkzeugmaschinen, Tagungsband zum 14. Dresdner Werkzeugmaschinen-Fachseminar: Lineardirektantriebe in Werkzeugmaschinen, 243–264.
- [6] GROβMANN K., MÜLLER J., MERX M., PEUKERT C., 2014, Reduktion antriebsverursachter Schwingungen, Antriebstechnik, 53/4, 35–42.
- [7] German patent specification DE102012101979B4.
- [8] IHLENFELDT S., MÜLLER J., PEUKERT C., MERX M., 2018, Kinematically coupled force compensation - experimental results for the 1D-implementation, 14th Internat. Conference on High Speed Machining, Donostia/San Sebastian, 17–18.04.2018.
- [9] ZENTNER J., 2005, Zur optimalen Gestaltung von Parallelkinematikmaschinen mit Planarantrieben, Doct. Thesis, TU Ilmenau.
- [10] VERL A., HOFFMEISTER H.-W., WURST K.-H., HEINZE T., GERDES A., KALTHOUM M., 2012, Kleine Werkzeugmaschinen für kleine Werkstücke, wt Werkstattstechnik online, 102/11/12, 744–749.
- [11] European patent specification EP0523042B1.
- [12] AMANN E., 2012, Modeling and motion control of a pick and place machine with air bearings, Master of Science Thesis, KTH Industrial Engineering and Management, Stockholm.
- [13] HARMAN G., 2010, Wire bonding in microelectronics, 3rd Edition, McGraw Hill, New York.
- [14] CHEN X., BAI Y., YANG Z., GAO J., CHEN G., 2015, A precision-positioning method for a high-acceleration low-load mechanism based on optimal spatial and temporal distribution of inertial energy, Engineering, 1/3, 391–398, https://doi.org/10.15302/J-ENG-2015063.
- [15] HIRAMOTO K., HANSEL A., DING S., YAMAZAKI H., 2005, A study on the drive at the Center of Gravity (DCG) feed principle and its application for development of high performance machine tool systems, CIRP Annals – Manufacturing Technology, 54/1, 333–336, https://doi.org/10.1016/S0007-8506(07)60116-4.
- [16] MARINESCU M., 2012, Elektrische und magnetische Felder, 3rd Edition, Springer, Heidelberg, Dordrecht, London, New York.
- [17] HERTWIG H., 1954, Induktivitäten, Verlag für Radio-Foto-Kinotechnik, Berlin.
- [18] https://www.triamec.com/de/servo-drives.html.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c8fe3b41-f975-4439-90a5-96a2b0af17b4