PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Promising method of ion exchange separation of anions before reverse osmosis

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Obiecująca metoda jonowymiennej separacji anionów przed odwróconą osmozą odsalania wód zmineralizowanych
Języki publikacji
EN
Abstrakty
EN
A method to improve the quality of purified water, reduce the cost of reagents for the regeneration of resin and create low-waste processes have been developed. This paper presents the results of ion exchange separation of sulfates and nitrates using AV-17-8 anion exchange resin in NO3 form. The efficiency of anion separation on the highly basic anion exchange resin AV-17-8 depends on the magnitude and ratio of their concentrations in water. Separation on the AV-17-8 anion exchange resin has been shown to be effective at concentrations of sulfates up to 800 mg/dm3 and nitrates up to 100 mg/dm3. Conditions for regeneration of 10% NaNO3 anion exchange resin were determined. Reagent precipitation of sulfates from the used regeneration solution in the form of calcium sulfate was carried out. Calcium sulfate precipitate can be used in the manufacturing of building materials. The regeneration solution is suitable for reuse. The developed results will allow to introduce low-waste desalination technology of highly mineralized waters.
PL
Celem pracy było opracowano metody poprawy jakości oczyszczonej wody, obniżenia kosztów odczynników do regeneracji żywicy i stworzenia procesów niskoodpadowych. W pracy przedstawiono wyniki rozdziału jonowymiennego siarczanów i azotanów z użyciem żywicy anionowymiennej AB-17-8 w postaci NO3. Skuteczność separacji anionów na wysoce zasadowej żywicy anionowymiennej AB-17-8 zależy od wielkości i stosunku ich stężeń w wodzie. Wykazano, że rozdział na żywicy anionowymiennej AB-17-8 jest skuteczny przy stężeniach siarczanów do 800 mg/dm3 i azotanów do 100 mg/dm3. Określono warunki regeneracji 10% żywicy anionowymiennej NaNO3. Przeprowadzono odczynnikowe wytrącanie siarczanów z zużytego roztworu regeneracyjnego w postaci siarczanu wapnia. Osad siarczanu wapnia może być wykorzystany do produkcji materiałów budowlanych. Roztwór do regeneracji nadaje się do ponownego użycia. Opracowane wyniki pozwolą na wprowadzenie niskoodpadowej technologii odsalania wód wysokozmineralizowanych.
Rocznik
Strony
93--97
Opis fizyczny
Bibliogr. 29 poz., wykr.
Twórcy
autor
  • National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine
  • National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine
  • National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine
  • Ukrainian State Chemical-Engineering University, Dnipro, Ukraine
Bibliografia
  • 1. Berbar, Y., Amara, M. & Kerdjoudj, H. (2008). Anion exchange resin applied to a separation between nitrate and chloride ions in the presence of aqueous soluble polyelectrolyte, Desalination, 223, 238-242.
  • 2. Berger, E., Frör, O. & Schäfer, R.B. (2019). Salinity impacts on river ecosystem processes: a critical mini-review, Phil. Trans. R. Soc. B, 374, 20180010. DOI: 10.1098/rstb.2018.0010
  • 3. Bodzek, M. (2019). Membrane separation techniques - removal of inorganic and organic admixtures and impurities from water environment - review, Archives of Environmental Protection, 45, 4, pp. 4-19. DOI: 10.24425 / aep.2019.130237
  • 4. Bodzek, M., Konieczny, K. & Rajca, M. (2019). Membranes in water and wastewater disinfection - review, Archives of Environmental Protection, 45, pp. 3-18. DOI: 10.24425/aep.2019.126419
  • 5. Boyacioglu, H. (2014). Spatial dıfferentiation of water quality between reservoirs under anthropogenic and natural factors based on statistical approach, Archives of Environmental Protection, 40/1, pp. 41-50. DOI: 10.2478 / aep-2014-0002
  • 6. Chen, Q.-B., Ren, H., Tian, Z., Sun, L. & Wang, J. (2019). Conversion and pre-concentration of SWRO reject brine into high solubility liquid salts (HSLS) by using electrodialysis metathesis, Separation and Purification Technology, 213, pp. 587-598. DOI: 10.1016/j.seppur.2018.12.018
  • 7. Dharminder, Ram Kumar Singh, Vishal Kumar, Anoop Kumar Devedee, Mruthyunjaya, M. & Reshu Bhardwaj (2019). The clean water: The basic need of human and agriculture, International Journal of Chemical Studies, 7, 2, pp. 1994-1998.
  • 8. Hilary A. Dugan, H.A., Bartlett, S.L., Burke, S.M., Doubek, J.P. & Krivak, F.E. (2017). Salting our freshwater lakes, Proc. Natl Acad. Sci. USA, 114, 17, pp. 4453-4458. DOI: 10.1073/pnas.1620211114
  • 9. Gomelya, M.D., Trus, I.M. & Shabliy, T.O. (2014). Application of aluminium coagulants for the removal of sulphate from mine water, Chemistry & Chemical Technology, 8, 2, pp. 197-203. http://science2016.lp.edu.ua/chcht/application-auminiumcoagulants-removal-sulphate-mine-water.
  • 10. Griffith, M.B. (2017). Toxicological perspective on the osmoregulation and ionoregulation physiology of major ions by freshwater animals: teleost fish, crustacea, aquatic insects, and Mollusca, Environ. Toxicol. Chem., 36, pp. 576-600. DOI: 10.1002/etc.3676
  • 11. Grodzka-Łukaszewska, M., Pawlak, Z. & Sinicyn, G. (2021). Spatial distribution of the water exchange through river cross-section-measurements and the numerical model, Archives of Environmental Protection, 47, 1, pp. 69-79. DOI: 10.24425/aep.2021.136450
  • 12. Halysh, V., Trus, I., Nikolaichuk, A., Skiba, M., Radovenchyk, I., Deykun, I., Vorobyova, V., Vasylenko, I. & Sirenko, L. (2020). Spent Biosorbents as Additives in Cement Production, Journal of Ecological Engineering, 21, 2, pp. 131-138. DOI: 10.12911/22998993/116328
  • 13. Hardikar, M., Marquez, I. & Achilli, A. (2020). Emerging investigator series: membrane distillation and high salinity: analysis and implications, Environmental Science: Water Research & Technology, 6, 6, pp. 1538-1552. DOI: 10.1039/C9EW01055F
  • 14. Kaushal, S.S. (2016). Increased salinization decreases safe drinking water, Environ. Sci. Technol., 50, pp. 2765-2766. DOI: 10.1021/acs.est.6b00679
  • 15. Lu, H., Wang, L., Wycisk, R., Pintauro, P.N. & Lin, S. (2020). Quantifying the kinetics-energetics performance tradeoff in bipolar membrane electrodialysis, Journal of Membrane Science, 612, 118279. DOI: 10.1016/j.memsci.2020.118279
  • 16. Luo, T., Abdu, S. & Wessling, M. (2018). Selectivity of ion exchange membranes: A review, Journal of Membrane Science, 555, pp. 429-454. DOI: 10.1016/j.memsci.2018.03.051.
  • 17. Mester, T., Szabó, G., Bessenyei, É., Karancsi, G., Barkóczi, N. & Balla, D. (2017). The effects of uninsulated sewage tanks on groundwater. A case study in an eastern Hungarian settlement, J. Water Land Dev., 33, pp.123-129. DOI: 10.1515/jwld-2017-0027.
  • 18. Mirzavand, M., Ghasemieh, H., Sadatinejad, S.J. & Bagheri, R. (2020). An overview on source, mechanism and investigation approaches in groundwater salinization studies, Int. J. Environ. Sci. Technol., 17, pp. 2463-2476. DOI: 10.1007/s13762-020-02647-7
  • 19. Mubita, T., Porada, S., Aerts, P. & van der Wal, A. (2020). Heterogeneous anion exchange membranes with nitrate selectivity and low electrical resistance, Journal of Membrane Science, 607, 118000.
  • 20. Panagopoulos, A. (2020). A comparative study on minimum and actual energy consumption for the treatment of desalination brine, Energy, 212, 118733. DOI: 10.1016/j.energy.2020.118733
  • 21. Radovenchyk, I., Trus, I., Halysh, V., Krysenko, T., Chuprinov, E. & Ivanchenko, A. (2021). Evaluation of Optimal Conditions for the Application of Capillary Materials for the Purpose of Water Deironing, Ecol. Eng. Environ. Technol., 2, pp. 1-7. DOI:10.12912/27197050/133256
  • 22. Rajca, M. (2012). The impact of selected factors on the removal of anionic water pollutants in ion-exchange process of MIEX®DOC, Archives of Environmental Protection, 38, pp. 115-121. DOI: 10.2478/v10265-012-0010-z
  • 23. Schuler, M.S., Cañedo-Argüelles, M., Hintz, W.D., Dyack, B., Birk, S. & Relyea, R.A. (2018). Regulations are needed to protect freshwater ecosystems from salinization, Philos Trans R Soc Lond B Biol Sci, 374, 1764, 20180019. DOI: 10.1098/rstb.2018.0019
  • 24. Trokhymenko, G., Magas, N., Gomelya, N., Trus, I. & Koliehova, A. (2020). Study of the Process of Electro Evolution of Copper Ions from Waste Regeneration Solutions, Journal of Ecological Engineering, 21, 2, pp. 29-38. DOI: 10.12911/22998993/116351
  • 25. Trus, I. & Gomelya, M. (2021). Effectiveness nanofiltration during water purification from heavy metal ions, Journal of Chemical Technology and Metallurgy, 56, 3, pp. 615-620, https://dl.uctm.edu/journal/node/j2021-3/21_20-03p615-620.pdf.
  • 26. Trus, I., Radovenchyk, I., Halysh, V., Skiba, M., Vasylenko, I., Vorobyova, V., Hlushko, O. & Sirenko, L. (2019). Innovative Approach in Creation of Integrated Technology of Desalination of Mineralized Water, Journal of Ecological Engineering, 20, 8, pp. 107-113. DOI: 10.12911/22998993/110767
  • 27. Trus, I.M., Gomelya, M.D., Makarenko, I.M., Khomenlo, A.S. & Trokhymenko, G.G. (2020). The Study of the particular aspects of water purification from heavy metal ions using the method of nanofiltration, Naukovyi Visnyk Natsionalnogo Hirnychogo Universytety, 4, pp.117-123. DOI: 10.33271/nvngu/2020-4/117
  • 28. Vörösmarty, C.J., McIntyre, P.B., Gessner, M.O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, Sullivan, C.A., Liermann, C.R. & Davies, P.M. (2010). Global threats to human water security and river biodiversity, Nature, 467, pp. 555-561. DOI: 10.1038/nature09440
  • 29. Wiśniowska, E. & Włodarczyk-Makuła, M. (2020). Removal of nitrates and organic compounds from aqueous solutions by zero valent (ZVI) iron reduction coupled with coagulation/precipitation process, Archives of Environmental Protection, 46, 3, pp. 22-29. DOI: 10.24425/aep.2020.134532
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c8fcc135-fb62-4e2a-ad20-e0d7bd900568
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.