PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of hydrogel- and xerogel-based sorbent from Empty Fruit Bunch (EFB)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This paper focuses on the synthesis and comparison of hydrogel- and xerogel-based sorbents from EFB. Design/methodology/approach: Hydrogels were synthesised by polymerisation of EFB biochar with acrylamide (AAm) as a monomer, N, N'-Methylenebisacrylamide (MBA) as cross-linker and ammonium persulfate (APS) as initiator, as well as by internal gelation method of sodium alginate, empty fruit bunch (EFB), calcium carbonate (CaCO3), and glucono delta-lactone (GDL). From the alginate hydrogels obtained, xerogels were synthesised via the oven-drying method. Then, EFB-based hydrogel and xerogel sorbents were analysed and compared based on characterisation analysis by using scanning electron microscopy (SEM), Brunauer− Emmett−Teller (BET), Fourier-Transform Infrared Spectroscopy (FTIR), and thermogravimetric analysis (TGA). Findings: The xerogel-based EFB is a better adsorbent than the hydrogel-based EFB because it has a larger pore volume (0.001449 cm3/g), larger pore size (63.7987 nm), higher moisture content (7.97%), lower ash content (12.55%), and is more thermally stable. Research limitations/implications: The research is to compare two new adsorbents, namely Hydrogel and Xerogel, from EFB in terms of their characteristics. Practical implications: Both adsorbents show a highly toxic material uptake, especially EFB xerogel. This adsorbent is comparable with the other commercialised adsorbent. Thus, this product can be a highly potential adsorbent for gas and wastewater adsorption. Originality/value: The authenticity results of this article were found to be 15% similar. The novelty of this paper is to compare the two adsorbents, namely hydrogel and xerogel, that originated from EFB.
Rocznik
Strony
49--60
Opis fizyczny
Bibliogr. 39 poz.
Twórcy
autor
  • Industrial Process Reliability & Sustainability (INPRES) Research Group, School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam, 40450 Selangor, Malaysia
autor
  • Industrial Process Reliability & Sustainability (INPRES) Research Group, School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam, 40450 Selangor, Malaysia
autor
  • Industrial Process Reliability & Sustainability (INPRES) Research Group, School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam, 40450 Selangor, Malaysia
  • Industrial Process Reliability & Sustainability (INPRES) Research Group, School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam, 40450 Selangor, Malaysia
autor
  • Industrial Process Reliability & Sustainability (INPRES) Research Group, School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam, 40450 Selangor, Malaysia
Bibliografia
  • [1] Y. Qian, Y. Yuan, H. Wang, H. Liu, J. Zhang, S. Shi, Z. Guo, N. Wang, Highly efficient uranium adsorption by salicylaldoxime/polydopamine graphene oxide nanocomposites, Journal of Materials Chemistry A 6/48 (2018) 24676-24685. DOI: https://doi.org/10.1039/C8TA09486A
  • [2] A. Alshameri, H. He, J. Zhu, Y. Xi, R. Zhu, L. Ma, Q. Tao, Adsorption of ammonium by different natural clay minerals: Characterisation, kinetics and adsorption isotherms, Applied Clay Science 159 (2017) 83-93. DOI: https://doi.org/10.1016/j.clay.2017.11.007
  • [3] S. Yu, C. Zhang, L. Ma, Q. Fang, G. Chen, Insight into As2O3 adsorption characteristics by mineral oxide sorbents: Experimental and DFT study, Chemical Engineering Journal 420/2 (2021) 127593. DOI: https://doi.org/10.1016/j.cej.2020.127593
  • [4] A.E. Ogungbenro, D.V. Quang, K.A. Al-Ali, L.F. Vega, M.R.M. Abu-Zahra, Synthesis and characterisation of activated carbon from biomass date seeds for carbon dioxide adsorption, Journal of Environmental Chemical Engineering 8/5 (2020) 104257. DOI: https://doi.org/10.1016/j.jece.2020.104257
  • [5] M. Maqbool, H.N. Bhatti, S. Sadaf, M.M. Al-anazy, M. Iqbal, Biocomposite of polyaniline and sodium alginate with Oscillatoria biomass: a potential adsorbent for the removal of basic blue 41, Journal of Materials Research and Technology 9/6 (2020) 14729-14741. DOI: https://doi.org/10.1016/j.jmrt.2020.10.017
  • [6] J.F. Saldarriaga, N.A. Montoya, I. Estiati, A.T. Aguayo, R. Aguado, M. Olazar, Unburned material from biomass combustion as low-cost adsorbent for amoxicillin removal from wastewater, Journal of Cleaner Production 284 (2021) 124732. DOI: https://doi.org/10.1016/j.jclepro.2020.124732
  • [7] R.T.L. Ng, D.K.S. Ng, Systematic Approach for Synthesis of Integrated Palm Oil Processing Complex. Part 1: Single Owner, Industrial and Engineering Chemistry Research 52/30 (2013) 10206-10220. DOI: https://doi.org/10.1021/ie302926q
  • [8] P. Kimia, B. Tandan, K. Buah, K. Sawit, Chemical and Physical Characterization of Oil Palm Empty Fruit Bunch, Malaysian Journal of Analytical Sciences 21/1 (2017) 188-196. DOI: http://dx.doi.org/10.17576/mjas- 2017-2101-22
  • [9] N.B. Juli, N. Talib, N. Ahmad, A.B. Alias, Monte carlo simulation hydrogen sulphide gas adsorption by using hydrogel biochar, Egyptian Journal of Chemistry 64/6 (2021) 2789-2796. DOI: https://doi.org/10.21608/ejchem.2021.54278.3129
  • [10] N. Karakoyun, S. Kubilay, N. Aktas, O. Turhan, M. Kasimoglu, S. Yilmaz, N. Sahiner, Hydrogel – Biochar composites for effective organic contaminant removal from aqueous media, Desalination 280/1-3 (2011) 319- 325. DOI: https://doi.org/10.1016/j.desal.2011.07.014
  • [11] S. Rbihi, L. Laallam, M. Sajieddine, A. Jouaiti, Characterisation and thermal conductivity of cellulose based composite xerogels, Heliyon 5/5 (2019) e01704. DOI: https://doi.org/10.1016/j.heliyon.2019.e01704
  • [12] L. Gao, H. Gan, Z. Meng, R. Gu, Z. Wu, L. Zhang, X. Zhu, W. Sun, J. Li, Y. Zheng, G. Dou, Colloids and Surfaces B : Biointerfaces Effects of genipin cross-linking of chitosan hydrogels on cellular adhesion and viability, Colloids and Surfaces B: Biointerfaces 117 (2014) 398-405. DOI: https://doi.org/10.1016/j.colsurfb.2014.03.002
  • [13] M.R. Zakaria, S. Fujimoto, S. Hirata, M.A. Hassan, Ball Milling Pretreatment of Oil Palm Biomass for Enhancing Enzymatic Hydrolysis, Applied Bio-chemistry and Biotechnology 173 (2014) 1778-1789. DOI: https://doi.org/10.1007/s12010-014-0964-5
  • [14] R. Rodríguez-Dorado, C. López-Iglesias, C.A. García- González, G. Auriemma, R.P. Aquino, P. Del Gaudio, Design of Aerogels, Cryogels and Xerogels of Alginate: Effect of Molecular Weight, Gelation Conditions and Drying Method on Particles’ Micromeritics, Molecules 24/6 (2019) 1049. DOI: https://doi.org/10.3390/molecules24061049
  • [15] N.H. Meri, Adsorption Of Hydrogen Sulphide (H2S) By Empty Fruit Bunch Hydrogel Biochar Composite (EFB-HBC), MSc Thesis, Universiti Teknologi Mara (UiTM), Malaysia, 2019.
  • [16] N.F.A.A. Rizal, M.F. Ibrahim, M.R. Zakaria, E.K. Bahrin, S. Abd-Aziz, M.A. Hassan, Combination of superheated steam with laccase pretreatment together with size reduction to enhance enzymatic hydrolysis of oil palm biomass, Molecules 23/4 (2018) 811. DOI: https://doi.org/10.3390/molecules23040811
  • [17] V.S. Prabhin, K. Jeyasubramanian, N.R. Romulus, N.N. Singh, Fabrication of dye sensitized solar cell using chemically tuned CuO nanoparticles prepared by sol-gel method, Archives of Materials Science and Engineering 83/1 (2017) 5-9. DOI: https://doi.org/10.5604/01.3001.0009.7535
  • [18] D.Q. A’yuni, A. Subagio, H. Hadiyanto, A.C. Kumoro, M. Djaeni, Microstructure silica leached by naoh from semi-burned rice husk ash for moisture adsorbent, Archives of Materials Science and Engineering 108/1 (2021) 5-15. DOI: https://doi.org/10.5604/01.3001.0015.0248
  • [19] P. Suresh, L. Korving, K.J. Keesman, M.C.M. Van Loosdrecht, G. Witkamp, Effect of pore size distribution and particle size of porous metal oxides on phosphate adsorption capacity and kinetics, Chemical Engineering Journal 358 (2019) 160-169. DOI: https://doi.org/10.1016/j.cej.2018.09.202
  • [20] R.E. Masto, A. Ansari, J. George, V.A. Selvi, L.C. Ram, Co-application of biochar and lignite fly ash on soil nutrients and biological parameters at different crop growth stages of Zea mays. Ecological Engineering 58 (2013) 314-322. DOI: https://doi.org/10.1016/j.ecoleng.2013.07.011
  • [21] N.M.F. Mat Yasin, Synthesis and Characterisation of Oven-Dried Oil Palm Empty Fruit Bunches-Based Xerogels for Absorption of Engine Oil, MSc Thesis, Universiti Teknologi Mara (UiTM), Malaysia, 2021.
  • [22] P.N. Dave, A. Gor, Natural Polysaccharide-Based Hydrogels and Nanomaterials: Recent Trends and Their Applications, in: C.M. Hussain (ed), In Micro and Nano Technologies, Handbook of Nanomaterials for Industrial Applications, Elsevier, 2018, 36-66. DOI: https://doi.org/10.1016/B978-0-12-813351-4.00003-1
  • [23] A. Sarfraz, A. H. Raza, M. Mirzaeian, Q. Abbas, R. Raza, Electrode Materials for Fuel Cells, in: A.-G. Olabi (ed), Encyclopedia of Smart Materials, Volume 2, Elsevier, 2022, 341-356. DOI: https://doi.org/10.1016/B978-0-12-803581- 8.11742-4
  • [24] N.H. Meri, A.B. Alias,N. Talib, Z.A. Rashid, W.A.W.A.K. Ghani, Comparison of H2S adsorption by two hydrogel composite (HBC) derived by Empty Fruit Bunch (EFB) biochar and Coal Fly Ash (CFA), IOP Conference Series: Materials Science and Engineering 334 (2018) 012038. DOI: https://doi.org/10.1088/1757-899X/334/1/012038
  • [25] M.A.F. Supian, K.N.M. Amin, S.S. Jamari, S. Mohamad, Production of cellulose nanofiber (CNF) from empty fruit bunch (EFB) via mechanical method, Journal of Environmental Chemical Engineering 8/1 (2020) 103024. DOI: https://doi.org/10.1016/j.jece.2019.103024
  • [26] S.H. Chang, An overview of empty fruit bunch from oil palm as feedstock for bio-oil production, Biomass and Bioenergy 62 (2014) 174-181. DOI: https://doi.org/10.1016/j.biombioe.2014.01.002
  • [27] R. Idris, W.W.F. Chong, A. Ali, S. Idris, M.S. Hasan, F.N. Ani, C.T. Chong, Phenol-rich bio-oil derivation via microwave-induced fast pyrolysis of oil palm empty fruit bunch with activated carbon, Environmental Technology and Innovation 21 (2021) 101291. DOI: https://doi.org/10.1016/j.eti.2020.101291
  • [28] T. Nuraiti, T. Izhar, Adsorption of Hydrogen Sulfide (H2S) from Municipal Solid Waste by Using Biochars, Biointerface Research in Applied Chemistry 12/6 (2022) 8057-8069. DOI: https://doi.org/10.33263/BRIAC126.80578069
  • [29] N.M.F.M. Yasin, N.H. Meri, N. Talib, W.A.W.A.K. Ghani, Z.A. Rashid, A.B. Alias, Breakthrough Analysis of Empty Fruit Bunch-Based Hydrogel Biochar Composite (EFB-HBC) for Hydrogen Sulphide (H2S) Adsorption Study Removal, in: Advances in Engineering Research, Volume 200, Proceedings of the Third International Conference on Separation Technology 2020 “ICoST 2020”, 216-225. DOI: https://doi.org/10.2991/aer.k.201229.030
  • [30] P. Wahyuningsih, N. Yusri, Hamdani, Characterisation of Activated Carbon Prepared from Oil Palm Empty Fruit Bunch by Chemical Activation using Sulphuric Acid (H2SO4), Proceedings of the International Conference on Engineering and Science for Research and Development “ICESReD”, 2016, 239-244.
  • [31] D. Kibami, C. Pongener, K.S. Rao, D. Sinha, Preparation and characterisation of activated carbon from Fagopyrum esculentum Moench by HNO3 and H3PO4 chemical activation, Der Chemica Sinica 5/4 (2014) 46-55.
  • [32] S. Maulina, M Iriansyah, Characteristics of activated carbon resulted from pyrolysis of the oil palm fronds powder, IOP Conference Series: Materials Science and Engineering 309 (2018) 012072. DOI: https://doi.org/10.1088/1757-899X/309/1/012072
  • [33] N. Claoston, A.W. Samsuri, M.A. Husni, M.M. Amran, Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars, Waste Management and Research 32/4 (2014) 331-339. DOI: https://doi.org/10.1177/0734242X14525822
  • [34] H.P.S.A. Khalil, A.F.I. Yusra, A.H. Bhat, M. Jawaid, Cell wall ultrastructure, anatomy, lignin distribution, and chemical composition of Malaysian cultivated kenaf fiber, Industrial Crops and Products 31/1 (2010) 113-121. DOI: https://doi.org/10.1016/j.indcrop.2009.09.008
  • [35] I.Y.A. Fatah, H.P.S.A. Khalil, M.S. Hossain, A.A. Aziz, Y. Davoudpour, R. Dungani, A. Bhat, Exploration of a chemo-mechanical technique for the isolation of nanofibrillated cellulosic fiber from oil palm empty fruit bunch as a reinforcing agent in composites materials, Polymers 6/10 (2014) 2611- 2624. DOI: https://doi.org/10.3390/polym6102611
  • [36] N.H. Meri, A.B. Alias, Z.A. Rashid, W.A.W.A.K. Ghani, Effect of Chemical Washing Pre-treatment of Empty Fruit Bunch (EFB) biochar on Characterization of Hydrogel Biochar composite as Bioadsorbent, IOP Conference Series: Materials Science and Engineering 358 (2018) 012018. DOI: https://doi.org/10.1088/1757- 899X/358/1/012018
  • [37] E. David, C. Sandru, A. Armeanu, Zeolitization characteristics of fly ash and its use to manufacture porous materials, Archives of Materials Science and Engineering 90/2 (2018) 56-67. DOI: https://doi.org/10.5604/01.3001.0012.0663
  • [38] M. Szindler, M.M. Szindler, L.A. Dobrzański, T. Jung, NiO nanoparticles prepared by the sol-gel method for a dye sensitised solar cell applications, Archives of Materials Science and Engineering 92/1 (2018) 15-21. DOI: https://doi.org/10.5604/01.3001.0012.5507
  • [39] F. Fahma, I. Febiyanti, N. Lisdayana, I.W. Arnata, D. Sartika, Nanocellulose as a new sustainable material for various applications: A review, Archives of Materials Science and Engineering 109/2 (2021) 49-64. DOI: https://doi.org/10.5604/01.3001.0015.2624
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c8ef81f5-4613-412a-a05c-e7f42ef52e32
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.