Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The purpose of this paper was to present the thermoporoelasticity model adapted for application in modelling processes, where phase transition may occur, such as during underground coal gasification (UCG). The mathematical model of the medium (soil/rock with pores filled with liquid/gas) in non-isothermal conditions is based on Biot’s poroelasticity model. The poroelasticity model is expanded here by the influence of temperature and adjusted to the case where both liquid and highly compressible fluid are present in pores by using the gas laws. This requires considering temperature-dependent physical quantities such as pore fluid density, heat transfer coefficient and viscosity as functions of temperature. Based on the proposed mathematical model and the finite element method, a numerical model was built for the purpose of computing processes occurring in the vicinity of the UCG generator. The result of the authors’ work is a three-dimensional (3D) model, which was not only modified, but derived straight from the laws of thermodynamics, where fields of displacement, temperature and fluid flow are coupled. The model makes it possible to determine results significant to modelling of the UCG process, the reach of the gaseous phase’s presence in pores, subsidence values, temperature distribution and directions and rate of seepage, without losing the simplicity and elegance of Biot’s original concept. Next, the results of simulations for a hypothetical deposit to estimate the environmental impact of UCG are presented. After applying specific geometry and parameters, the model can be useful for verifying if the chosen technology of UCG in specific conditions will be safe for the environment and infrastructure.
Wydawca
Czasopismo
Rocznik
Tom
Strony
116--134
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
- Wrocław University of Science and Technology, Faculty of Civil Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
- Wrocław University of Science and Technology, Faculty of Technology and Life Sciences, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
- [1] Burchart-Korol, D., Krawczyk, P., Czaplicka-Kolarz, K., Smoliński, A. (2016). Eco-efficiency of underground coal gasification (UCG) for electricity production. Fuel, 173(January), 239–246. https://doi.org/10.1016/j.fuel.2016.01.019
- [2] Meeting, A., Engineers, C., Francisco, S. (1984). Commercial project planned for underground coal gasification. Chemical and Engineering News, 62(51), 25–27. https://doi.org/10.1021/cen-v062n051.p025
- [3] Shafirovich, E., Varma, A. (2009). Underground coal gasification: A brief review of current status. Industrial and Engineering Chemistry Research, 48(17), 7865–7875. https:// doi.org/10.1021/ie801569r
- [4] Wiatowski, M., Stańczyk, K., Świadrowski, J., Kapusta, K., Cybulski, K., Krause, E., … Smoliński, A. (2012). Semi-technical underground coal gasification (UCG) using the shaftmethod in Experimental Mine “barbara.” Fuel, 99, 170–179. https://doi.org/10.1016/j.fuel.2012.04.017
- [5] Mocek, P., Pieszczek, M., Świadrowski, J., Kapusta, K., Wiatowski, M., Stańczyk, K. (2016). Pilot-scale underground coal gasification (UCG) experiment in an operating Mine "Wieczorek" in Poland. Energy, 111, 313–321. https://doi.org/10.1016/j.energy.2016.05.087
- [6] Friedmann, J. (2007). Fire in the Hole. Lawrence Livermore National Laboratory Science and Technology Rewiev, 4, 12–18.
- [7] Bhutto, A. W., Bazmi, A. A., Zahedi, G. (2013). Underground coal gasification: From fundamentals to applications. Progress in Energy and Combustion Science, 39(1), 189–214. https://doi.org/10.1016/j.pecs.2012.09.004
- [8] Kostúr, K., Laciak, M., Durdan, M. (2018). Some influences of Underground Coal Gasification on the environment. Sustainability (Switzerland). https://doi.org/10.3390/su10051512
- [9] Blinderman, M. S., Blinderman, A., Taskaev, A. (2017). What makes a UCG technology ready for commercial application? Underground Coal Gasification and Combustion. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100313-8.00012-8
- [10] Yang, L. (2005). Theoretical analysis of the coupling effect for the seepage field, stress field, and temperature field in underground coal gasification. Numerical Heat Transfer; Part A: Applications, 48(6), 585–606. https://doi.org/10.1080/10407780490508115
- [11] Otto, C., Kempka, T. (2015). Thermo-mechanical simulations of rock behavior in underground coal gasification show negligible impact of temperature-dependent parameters on permeability changes. Energies. https://doi.org/10.3390/en8065800
- [12] Li, H. zhan, Guo, G. li, Zha, J. feng, Yuan, Y. fei, Zhao, B. chen. (2016). Research on the surface movement rules and prediction method of underground coal gasification. Bulletin of Engineering Geology and the Environment. https://doi.org/10.1007/s10064-015-0809-7
- [13] Akbarzadeh Kasani, H., Chalaturnyk, R. J. (2017). Coupled reservoir and geomechanical simulation for a deep underground coal gasification project. Journal of Natural Gas Science and Engineering. https://doi.org/10.1016/j.jngse.2016.12.002
- [14] Pivnyak, G., Dychkovskyi, R., Bobyliov, O., Cabana, E. C., Smoliński, A. (2018). Mathematical and Geomechanical Model in Physical and Chemical Processes of Underground Coal Gasification. Solid State Phenomena, 277, 1–16. https://doi.org/10.4028/www.scientific.net/SSP.277.1
- [15] Uciechowska-grakowicz, A. (2018). Termokonsolidacja ośrodka porowatego z uwzględnieniem występowania fazy gazowej. Politechnika Wrocławska.
- [16] Strzelecki, T., Bartlewska-Urban, M., Kaźmierczak, A., Overchenko, L., Strzelecki, M., Uciechowska-Grakowicz, A. (2018). Mechanika ośrodków porowatych. Wrocław: Dolnośląskie Wydawnictwo Edukacyjne.
- [17] Biot, M. A. (1941). Reprinted Series General Theory of Three-Dimensional Consolidation. Journal of Applied Physics, 12(2), 155–164. https://doi.org/10.1063/1.1712886
- [18] Biot, M. A. (1955). Theory of elasticity and consolidation for a porous anisotropic solid. Journal of Applied Physics, 26(2), 182–185. https://doi.org/10.1063/1.1721956
- [19] Ulm, F.-J., Constantinides, G., Heukamp, F. H. (2004). Is concrete a poromechanics materials?—A multiscale investigation of poroelastic properties. Materials and Structures. https://doi.org/10.1007/BF02481626
- [20] Moeendarbary, E., Valon, L., Fritzsche, M., Harris, A. R., Moulding, D. A., Thrasher, A. J., … Charras, G. T. (2013). The cytoplasm of living cells behaves as a poroelastic material. Nature Materials. https://doi.org/10.1038/nmat3517
- [21] Berger, L., Bordas, R., Burrowes, K., Grau, V., Tavener, S., Kay, D. (2016). A poroelastic model coupled to a fluid network with applications in lung modelling. International Journal for Numerical Methods in Biomedical Engineering. https://doi.org/10.1002/cnm.2731
- [22] Coussy, O. (2007). Revisiting the constitutive equations of unsaturated porous solids using a Lagrangian saturation concept. International Journal for Numerical and Analytical Methods in Geomechanics. https://doi.org/10.1002/nag.613
- [23] Coussy, O. (2010). Mechanics and Physics of Porous Solids. Mechanics and Physics of Porous Solids. https://doi.org/10.1002/9780470710388
- [24] Derski, W. (1975). Zarys Mechaniki Ośrodków Ciągłych. PWNWarszawa.
- [25] Strzelecki, T., Kostecki, S., Żak, S. (2008). Modelowanie przepływów przez ośrodki porowate. Wrocław: DWE.
- [26] Coussy, O. (2004). Poromechanics. John Wiley & Sons, Ltd.
- [27] Gawin, D., Baggio, P., Schrefler, B. A. (1995). Coupled heat, water and gas flow in deformable porous media. International Journal for Numerical Methods in Fluids, 20(8–9), 969–987. https://doi.org/10.1002/fld.1650200817
- [28] Bartlewska-Urban, M., Strzelecki, T. (2014). Numerical Calculation of Deformation of Three Dimensional Sample in Triaxial Apparatus Under External Load and Temperature Field. Studia Geotechnica et Mechanica, 35(1), 27–39. https://doi.org/10.2478/sgem-2013-0003
- [29] Strzelecki, M. (2016). Model termo-filtracji w obszarze oddziaływania generatora zgazowania węgla.
- [30] Liu, J., Liang, X., Xue, Y., Yao, K., Fu, Y. (2020). Numerical evaluation on multiphase flow and heat transfer during thermal stimulation enhanced shale gas recovery. Applied Thermal Engineering, 178, 115554. https://doi.org/10.1016/j.applthermaleng.2020.115554
- [31] Nowacki, W. (1975). Teoria sprężystości. PWN Warszawa.
- [32] Suárez-arriaga, M. C. (2010). Thermo-poroelasticity in geothermics , formulated in four dimensions La termoporoelasticidad en geotermia , definida en cuatro dimensiones, 23(2), 41–50.
- [33] Tran, D., Settari, A., Nghiem, L. (2004). New Iterative Coupling Between a Reservoir Simulator and a Geomechanics Module. SPE Journal. https://doi.org/10.2118/88989-PA
- [34] Bary, B., De Morais, M. V. G., Poyet, S., Durand, S. (2012).Simulations of the thermo-hydro-mechanical behavior of an annular reinforced concrete structure heated up to 200°C. Engineering Structures, 36, 302–315. https://doi.org/10.1016/j.engstruct.2011.12.007
- [35] Bartlewska-Urban, M., Zombroń, M., Strzelecki, T. (2016). Numerical analysis of road pavement thermal deformability, based on biot viscoelastic model of porous medium. Studia Geotechnica et Mechanica, 38(1), 15–22. https://doi.org/10.1515/sgem-2016-0002
- [36] Lecampion, B. (2013). A macroscopic poromechanical model of cement hydration. European Journal of Environmental and Civil Engineering. https://doi.org/10.1080/19648189.2013.768554
- [37] Néron, D., Dureisseix, D. (2008). A computational strategy for thermo-poroelastic structures with a time-space interface coupling. International Journal for Numerical Methods in Engineering. https://doi.org/10.1002/nme.2283
- [38] Rosen, M. A., Reddy, B. V., Self, S. J. (2017). Underground coal gasification (UCG) modeling and analysis. Underground Coal Gasification and Combustion. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100313-8.00011-6
- [39] Biot, M. A. (1956). Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid.I. Low Frequency Range. The Journal of the Acoustical Society of America. https://doi.org/10.1063/1.1721956
- [40] Xue, Y., Teng, T., Dang, F., Ma, Z., Wang, S., Xue, H. (2020). Productivity analysis of fractured wells in reservoir of hydrogen and carbon based on dual-porosity medium model. International Journal of Hydrogen Energy, 45(39), 20240–20249. https://doi.org/10.1016/j.ijhydene.2019.11.146
- [41] Uciechowska-Grakowicz, A., Strzelecki, T. (2017). Non-Isothermal Constitutive Relations and Heat Transfer Equations of a Two-Phase Medium. Studia Geotechnica et Mechanica, 39(3), 67–78. https://doi.org/10.1515/sgem-2017-0031
- [42] Uciechowska-Grakowicz, A., Strzelecki, T. (2016). Numerical model of heat transfer in three phases of the poroelastic medium. Studia Geotechnica et Mechanica, 38(2), 53–59. https://doi.org/10.1515/sgem-2016-0019
- [43] Strzelecki, T. (2006). Równania termokonsolidacji gruntów i skał: Geotechnika i budownictwo specjalne. In XXIX Zimowa Szkoła Mechaniki Górotworu i Geoinzynierii, Kraków Krynica 12-17 marca 2006 (pp. 285–299). wyd. Katedry Geomechaniki, Budownictwa i Geotechniki AGH.
- [44] Biot, M. A., Willis, D. G. (1957). The Elastic Coefficients of the Theory of Consolidation. Journal of Applied Mechanics. https://doi.org/10.1002/9780470172766.ch13
- [45] Blachowski, J. (2015). Methodology for assessment of the accessibility of a brown coal deposit with Analytical Hierarchy Process and Weighted Linear Combination. Environmental Earth Sciences, 74(5), 4119–4131. https://doi.org/10.1007/s12665-015-4461-0
- [46] Nowak, J., Kudelko, J. (2013). LGOM region as a perspective power energy basin and implementation of innovative lignite development methods. Mineral Economics, 25(2–3), 65–70. https://doi.org/10.1007/s13563-012-0024-y
- [47] Blinderman, M. S., Jones, R. M. (2002). The Chinchilla IGCC Project to Date: Underground Coal Gasification and Environment. Gasification Technologies Conference, San Francisco, USA, October 27-30, 14. Retrieved from http://www.lincenergy.com/data/info_sheets/u3-fact.pdf
- [48] Yang, L. H. (2008). Model test on Underground Coal Gasification (UCG) with low-pressure fire Seepage pushthrough. Part I: Test conditions and air fire seepage. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 30(17), 1587–1594. https://doi.org/10.1080/15567030802112102
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c8ec4cc7-95b0-4b6a-bd2c-e8aeecd01a16