PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Grazing of the copepod Cyclops vicinus on toxic Microcystis aeruginosa : potential for controlling cyanobacterial blooms and transfer of toxins

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Grazing of zooplankton on phytoplankton may contribute to a reduction of harmful cyanobacteria in eutrophic waters. However, the feeding capacity and interaction between zooplankton and toxic cyanobacteria vary among grazer species. In this study, laboratory feeding experiments were designed to measure the grazing rate of the copepod Cyclops vicinus on Microcystis aeruginosa and the potential microcystin (MC) accumulation in the grazer. Copepods were fed a mixed diet of the edible green alga Ankistrodesmus falcatus and toxic M. aeruginosa for 10 days. The results showed that C. vicinus efficiently ingested toxic Microcystis cells with high grazing rates, varying during the feeding period (68.9–606.3 Microcystis cells animal-1 d-1) along with Microcystis cell density. Microcystis cells exhibited a remarkable induction in MC production under grazing conditions with concentrations 1.67–12.5 times higher than those in control cultures. Furthermore, C. vicinus was found to accumulate MCs in its body with concentrations increasing during the experiment (0.05–3.21 μg MC animal-1). Further in situ studies are needed to investigate the ability of Cyclops and other copepods to assimilate and detoxify MCs at environmentally relevant concentrations before deciding on the biocontrol of Microcystis blooms by copepods.
Słowa kluczowe
Rocznik
Strony
296--302
Opis fizyczny
Bibliogr. 47 poz.
Twórcy
  • Department of Botany & Microbiology, Faculty of Science, Sohag University, Sohag 82524, Egypt
autor
  • King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia2
autor
  • Department of Botany & Microbiology, Faculty of Science, Sohag University, Sohag 82524, Egypt
Bibliografia
  • [1]. Belykh, O.I., Dmitrieva, O.A., Gladkikh, A.S. & Sorokovikova, E.G. (2013). Identification of toxigenic cyanobacteria of the genus Microcystis in the Curonian Lagoon (Baltic Sea). Oceanology 53(1): 71–79.
  • [2]. Błędzki, L.A. & Rybak, J.I. (2016). Freshwater Crustacean Zooplankton of Europe, Cladocera & Copepoda (Calanoida, Cyclopoida), Key to species identification, with notes on ecology, distribution, methods and introduction to data analysis. Springer, XVI.
  • [3]. Carmichael, W.W. (1996). Toxic Microcystis and the environment. In M.F. Watanabe, K.-I. Harada, W.W. Carmichael & H. Fujiki (Eds.), Toxic Microcystis (pp. 1–11). CRC Press.
  • [4]. Carmichael, W.W. & An, J. (1999). Using of enzyme linked immunosobent assay (ELISA) and a protein phosphatase inhibition assay (PPIA) for the detection of microcystin and nodularin. J. Nat. Toxins 7(6): 377–385.
  • [5]. Chen, W., Song, L., Ou, D. & Gan, N. (2005). Chronic toxicity and responses of several important enzymes in Daphnia magna on exposure to sublethal microcystin-LR. Environ. Toxicol. 20(3): 323–330.
  • [6]. DeMott, W.R. (1990). Retention efficiency perceptual bias, and active choice as mechanisms of food selection by suspension-feeding zooplankton. In R.N. Hughes (Ed.), Behavorial Mechanisms of Food Selection (pp. 569–594). NATO ASI Series, Series G: Ecological Series. Springer, New York.
  • [7]. DeMott, W.R., Zhang, Q.X. & Carmichael, W.W. (1991). Effects of toxic cyanobacteria and purified toxins on the survival and feeding of a copepod and 3 species of Daphnia. Limnol. Oceanogr. 36(7): 1346–1357.
  • [8]. Devetter, M. & Seda, J, (2006). Regulation of rotifer community by predation of Cyclops vicinus (Copepoda) in the Rimov reservoir in spring. Int. Rev. Hydrobiol. 91(1): 101–111.
  • [9]. Engström, J., Koski, M., Viitasalo, M., Reinikainen, M., Repka, S. et al. (2000). Feeding interactions of the copepods Eurytemora affinis and Acartia bifilosa with the cyanobacteria Nodularia sp. J. Plankton Res. 22(7):1403–1409.
  • [10]. Engstrom-Ost, J., Hogfors, H., El-Shehawy, R., Stasio, B.D., Vehmaa, A. et al. (2011). Toxin producing cyanobacterium Nodularia spumigena, potential competitors and grazers: testing mechanisms of reciprocal interactions. Aquat. Microb. Ecol. 62(1): 39–48.
  • [11]. Fulton, R.S. & Paerl, H. (1987). Effects of colonial morphology on zooplankton utilization of algal resources during blue-green algal (Microcystis aeruginosa) blooms. Limnol. Oceanogr. 32(3): 634–644.
  • [12]. Ger, K.A., The, S.J., Baxa, DV, Lesmeister S. & Goldman, C.R. (2010). The effects of dietary Microcystis aeruginosa and microcystin on the copepods of the upper San Francisco estuary. Freshw. Biol. 55(7): 1548–1559.
  • [13]. Gorokhova, E. & Engstrom-Ost, J. (2009). Toxin concentration in Nodularia spumigena is modulated by mesozooplankton grazers. J. Plankton Res. 31(10): 1235–1247.
  • [14]. Herrera, N.A., Echeverri, L.F. & Ferrao-Filho, A.S. (2015). Effects of phytoplankton extracts containing the toxin microcystin- LR on the survival and reproduction of cladocerans. Toxicon 95(1): 38–45.
  • [15]. Hötzel, G. & Croome, R. (1999). A Phytoplankton Methods Manual for Australian Freshwaters, LWRRDC Occasional Paper 22/29, Land and Water Research and Development Corporation: Canberra.
  • [16]. Ibelings, B.W., Bruning, K., De Jonge, J., Wolfstein, K., Pires, L.M. et al. (2005). Distribution of microcystins in a lake foodweb: no evidence for biomagnification. Microb. Ecol. 49(4): 487–500.
  • [17]. Jang, M.H., Ha, K., Joo, G.J. & Takamura, N. (2003). Toxin production of cyanobacteria is increased by exposure to zooplankton. Freshw. Biol. 48(9): 1540–1550.
  • [18]. Johnson, K.M. (1999). Microcystins in New Hampshire lakes and bioaccumulation in zooplankton. Unpublished Master dissertation. University of New Hampshire, Durham, NH, USA.
  • [19]. Kaczkowski, Z., Wojtal-Frankiewicz, A., Gągała. I., Mankiewicz- Boczek. J., Jaskulska. A. et al. (2017). Relationships between cyanobacteria, zooplankton and fish in sub-bloom conditions in the Sulejów Reservoir. J. Limnol. 76(2): 380–396.
  • [20]. Kosiba, J., Krztoń, W. & Wilk-Woźniak, E. (2018). Effect of microcystins on proto- and metazooplankton is more evident in artifficial than in natural waterbodies. Microb. Ecol. 75(2): 293–302.
  • [21]. Koski, M., Schmidt, K., Engström-Öst, J., Viitasalo, M., Jónasdóttir. S.H. et al. (2002). Calanoid copepods feed and produce eggs in the presence of toxic cyanobacteria Nodularia spumigena. Limnol. Oceanogr. 47(3): 878–885.
  • [22]. Kozlowski-Suzuki B., Karjalainen M., Lehtiniemi M., Engstrom-Ost J., Koski M. et al. (2003). Feeding, reproduction and toxin accumulation by the copepods Acartia bifilosa and Eurytemora affinis in the presence of the toxic cyanobacterium Nodularia spumigena. Marine Ecol. Prog. Series 249: 237–249.
  • [23]. Lehman, P.W., The, S.J., Boyer, G.L., Nobriga, M.L., Bass, E. et al. (2010). Initial impacts of Microcystis aeruginosa blooms on the aquatic food web in the San Francisco Estuary. Hydrobiol. 637(1): 229–248.
  • [24]. Lürling, M. (2003). Daphnia growth on microcystin-producing and microcystin-free Microcystis aeruginosa in different mixtures with the green alga Scenedesmus obliquus. Limnol. Oceanogr. 48(6): 2214–2220.
  • [25]. Mohamed, Z.A. (2001). Accumulation of cyanobacterial hepatotoxins by Daphnia in some Egyptian irrigation canals. Ecotoxicol. Environ. Safe. 50(1): 4–8.
  • [26]. Mohamed, Z.A., Carmichael, W.W. & Hussein, A.A. (2003). Estimation of microcystins in the freshwater fish Oreochromis niloticus in an Egyptian fish farm containing a Microcystis bloom. Environ. Toxicol. 18(2): 137–141.
  • [27]. Mohamed, Z.A. & Al-Shehri AM. (2013). Grazing on Microcystis aeruginosa and degradation of microcystins by the heterotrophic flagellate Diphylleia rotans. Ecotoxicol. Environ. Safe. 96: 48–52.
  • [28]. Oberhaus, L., Gélinas, M., Pinel-Alloul, B., Ghadouani, A. & Humbert, J.F. (2007). Grazing of two toxic Planktothrix species by Daphnia pulicaria: potential for bloom control and transfer of microcystins. J. Plankton Res. 29(10): 827–838.
  • [29]. Paerl, H.W. & Huisman, J. (2008). Blooms like it hot. Science 320(5872): 57–58.
  • [30]. Paes, T.A.S.V., Costa, I.A.S., Silva, A.P.C. & Eskinazi-Sant’Anna, E.M. (2016). Can microcystins affect zooplankton structure community in tropical eutrophic reservoirs? Brazil. J. Biol. 76(2): 450–460.
  • [31]. Panosso, R., Carlson, P., Kozlowsky-Suzuki, B., Azevedo, S.M.F.O. & Granéli, E. (2003). Effect of grazing by a neotropical copepod, Notodiaptomus, on a natural cyanobacterial assemblage and on toxic and non-toxic cyanobacteria strains. J. Plankton Res. 25(9): 1169–1175.
  • [32]. Piasecki, W., Goodwin, A.E., Eiras, J.C. & Nowak, B.F. (2004). Importance of copepoda in freshwater in freshwater aquaculture. Zool. Stud. 43(2): 193–205.
  • [33]. Sarnelle, O. & Wilson, A.E. (2005). Local adaptation of Daphnia pulicaria to toxic cyanobacteria. Limnol. Oceanogr. 34(5): 673–687.
  • [34]. Selander, E., Kubanek, J., Hamberg, M., Andersson, M.X., Cervin, G. et al. (2015). Predator lipids induce paralytic shellfish toxins in bloom-forming algae. Proc. Natl. Acad. Sci. USA 112(20): 6395–6400.
  • [35]. Shams, S., Cerasino, L., Salmaso, N. & Dietrich, D.R. (2014). Experimental models of microcystin accumulation in Daphnia magna grazing on Planktothrix rubescens: implications for water management. Aquat. Toxicol. 148: 9–15.
  • [36]. Smutná, M., Babica, P., Jarque, S., Hilscherova, K., Marsalek, B. et al. (2014). Acute, chronic and reproductive toxicity of complex cyanobacterial blooms in Daphnia magna and the role of microcystins. Toxicon 79: 11–18.
  • [37]. Sotton, B., Guillard, J., Anneville, O., Maréchal, M., Savichtcheva, O. et al. (2014). Trophic transfer of microcystins through the lake pelagic food web: evidence for the role of zooplankton as a vector in fish contamination. Sci. Total Environ. 466–467: 152–163.
  • [38]. Urrutia-Cordero, P., Ekvall, M.K. & Hansson, L.-A. (2015). Response of cyanobacteria to herbivorous zooplankton across predator regimes: who mows the bloom? Freshw. Biol. 60(5): 960–972.
  • [39]. Wang, X.D., Qin, B.Q., Gao, G. & Paerl, H.W. (2010). Nutrient enrichment and selective predation by zooplankton promote Microcystis (Cyanobacteria) bloom formation. J. Plankton Res. 32(4): 457–470.
  • [40]. Watanabe, M.F. (1996). Production of microcystins. In M.F. Watanabe, K.-I. Harada, W.W. Carmichael & H. Fujiki (Eds.), Toxic Microcystis (pp. 35–56). CRC Press.
  • [41]. Wilson, A.E. & Hay, M.E. (2007). A direct test of cyanobacterial chemical defense: variable effects of microcyst in treated food on two Daphnia pulicaria clones. Limnol. Oceanogr. 52(4): 1467–1479.
  • [42]. Wilson, A.E., Sarnelle, O. & Tillmanns, A.R. (2006). Effects of cyanobacterial toxicity and morphology on the population growth of freshwater zooplankton: meta analyses of laboratory experiments. Limnol. Oceanogr. 51(4): 1915–1924.
  • [43]. Wojtal-Frankiewicz, A., Bernasinska, J., Jurczak, T., Gwozdzinski, K., Frankiewicz, P. et al. (2013). Microcystin assimilation and detoxification by Daphnia spp. in two ecosystems of different cyanotoxin concentrations. J. Limnol. 72(1): 154–171.
  • [44]. Work, K.A. & Havens, K.A. (2003). Zooplankton grazing on bacteria and cyanobacteria in a eutrophic lake. J. Plankton Res. 25: 1301–1307.
  • [45]. Żak, A. & Kosakowska, A. (2016). Cyanobacterial and microalgal bioactive compounds – the role of secondary metabolites in allelopathic interactions. Oceanol. Hydrobiol. Stud. 45(1): 131–143.
  • [46]. Zhang, D., Xie, P., Chen, J., Dai, M., Qiu, T. et al. (2009). Determination of microcystin-LR and its metabolites in snail (Bellamya aeruginosa), shrimp (Macrobrachium nipponensis) and silver carp (Hypophthalmichthys molitrix) from Lake Taihu, China. Chemosphere 76(7): 974–981.
  • [47]. Zurawell, R.W., Chen, H., Burke, J.M. & Prepas E.E. (2005). Hepatotoxic cyanobacteria: a review of the biological importance of microcystins in freshwater environments. J. Toxicol. Environ. Health B 8(1): 1–37.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c8eb35af-c742-49ee-a140-8c9ca806bf1f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.