PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of determination of reduced and oxidized glutathione in rat striatum by HPLC method with fluorescence detection and pre-column derivatization

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A high-performance liquid chromatography (HPLC) method was used to assess the concentration of reduced and oxidized glutathione (GSH and GSSG) in rat striatum. Following decapitation, striatum was isolated from the male Wistar rat brain and immediately homogenized with double distilled water. GSH level was determined after pre-column derivatization with o-phthalaldehyde (OPA). The optimal incubation time with OPA was tested. The concentration of GSSG was determined after blockage the thiol groups of GSH by N-ethylmaleimide (NEM). The useful time for incubation with NEM was optimized. Next, disulfide bounds of GSSG were reduced by dithiothreitol (DTT), and released GSH is derivatized with OPA. The total glutathione, tGSH (sum of free and bound GSH, GSSG, and other low-molecular-mass aminothiols), was determined after reduction with DTT and then derivatization with OPA. The level of GSSG was calculated of the difference in concentrations of tGSH and GSH, but we showed that the calculated concentration of GSSG was within the range of standard deviation of the mean concentration of tGSH or GSH. Finally, the concentration of GSH was determined after 5-min incubation with OPA and the concentration of GSSG after 30-s incubation with NEM and 5-min incubation with DTT and OPA. The relative standard deviation (RSD) values obtained for the assay of GSH and GSSG were lower than 10%. The values obtained for accuracy for GSH (50–500 nM) and GSSG (0.5–5 nM) were within limits regarded as acceptable for analysis of biological samples (percent of recovery: 95–105%). Mean absolute recovery of GSH and GSSG was ranged from 97.1% to 99%. Limit of detection for GSH was 2.7 nM, and limit of quantification was 8.2 nM. Limit of detection (LOD) for GSSG is twice the value for GSH. Described method allows to determine GSH and GSSG levels in isolated rat brain structures with high level of reliability.
Rocznik
Strony
335--345
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • Jagiellonian University Medical College Department of Toxicology, Faculty of Pharmacy Medyczna str. 9 30-688 Kraków Poland
  • Jagiellonian University Medical College Department of Toxicology, Faculty of Pharmacy Medyczna str. 9 30-688 Kraków Poland
autor
  • Jagiellonian University Medical College Department of Toxicology, Faculty of Pharmacy Medyczna str. 9 30-688 Kraków Poland
autor
  • Jagiellonian University Medical College Department of Toxicology, Faculty of Pharmacy Medyczna str. 9 30-688 Kraków Poland
Bibliografia
  • [1] I. Dalle-Donne, R. Rossi, G. Colombo, D. Giustarini, and A. Milzani, Trends Biochem. Sci., 34, 85 (2009)
  • [2] G. Wu, Y.Z. Fang, S. Yang, J.R. Lupton, and N.D. Turner, J. Nutr., 134, 489 (2004)
  • [3] M.E. Anderson, Chem. Biol. Interact., 11, 1 (1998)
  • [4] K. Aoyama, M. Watable, and T. Nakaki, J. Pharmacol. Sci., 108, 227 (2008)
  • [5] D.S. Backos, C.C. Franklin, and P. Reigan, Biol. Pharm., 83, 1005 (2012)
  • [6] M. Raffa, F. Atig, A. Mhalla, A. Kerken, and A. Mechri, Psychiatry, 11, 12 (2011)
  • [7] J.W. Gawryluk, J.F. Wang, A.C. Andreazza, L. Shao, and L.T. Young, Int. J. Neuropsychopharmacol., 14, 123 (2011)
  • [8] P.K. Mandal, M. Tripathi, and S. Sugunan, Biochem. Biophys. Res. Commun. (2011) Nov 19. [Epub ahead of print]
  • [9] K. Aquilano, S. Baldelli, and M.R. Ciriolo, Commun. Integr. Biol., 4, 477 (2011)
  • [10] Y. Ma, Z. Zhang, C. Ren, G. Liu, and X. Chen, Analyst, 137, 485 (2012)
  • [11] S. Robin, N. Leveque, C. Courderot-Masuye, and P. Humbert, J. Chromatogr., B: Anal. Technol. Biomed. Life Sci., 879, 3599 (2011)
  • [12] A.A. Dadkhah-Tehrani and H. Karimi-Maleh, Drug Test Anal. (2011). doi: 10.1002/dta.347
  • [13] K.J. Huang, Q.S. Jing, C.Y. Wei, and Y.Y. Wu, Spectrochim. Acta A. Mol. Biomol. Spectrosc., 79, 1860 (2011)
  • [14] P. Monostori, G. Wittmann, E. Karg, and S. Túri, J. Chromatogr. B, 877, 3331 (2009)
  • [15] C. Cereser, J. Guichard, J. Drai, E. Bannier, I. Garcia, S. Boget, P. Parvaz, and A. Revol, J. Chromatogr. B, 752, 123 (2001)
  • [16] K.J. Lenton, H. Therriault, and J.R. Wagner, Anal. Biochem., 274, 125 (1999)
  • [17] L. Wang, I. Wang, T. Xia, G. Bian, L. Dong, Z. Tang, and F. Wang, Spectrochim. Acta A. Mol. Biomol. Spectrosc., 61, 2533 (2005)
  • [18] A.K. Sakhi, R. Blomhoff, and T.E. Gundersen, J. Chromatogr. A, 1142, 178 (2007)
  • [19] D. Giustarini, I. Dalle-Donne, R. Colombo, A. Milizani, and R. Rossi, Free Radic. Biol. Med., 35, 1365 (2003)
  • [20] R. Paroni, E. De Vecchi, G. Cighetti, C. Arcelloni, I. Fermo, A. Grosii, and P. Bonini, Clin. Chem., 41/3, 448 (1995)
  • [21] R. Rossi, I. Dalle-Donne, A. Milzani, and D. Giustarini, Clin. Chem., 52, 1406 (2006)
  • [22] B. Ates, B.C. Ercal, K. Manda, L. Abraham, and N. Ercal, Biomed. Chromatogr., 23, 119 (2009)
  • [23] B.H. Harvey, C. Joubert, J.L. du Preez, and M. Berk, Neurochem. Res., 33, 508 (2008)
  • [24] P.J. Hissin and R. Hilf, Anal. Biochem., 74, 214 (1976)
  • [25] V.H. Cohn and J. Lyle, Anal. Biochem., 14, 434 (1966)
  • [26] O.H. Lowry, N.J. Rosebrough, A.L. Farr, and R.J. Randall, J. Biol. Chem., 193, 265 (1951)
  • [27] Y. Iwasaki, Y. Saito, Y. Nakano, K. Mochizuki, O. Sakata, R. Ito, K. Saito, and H. Nakazawa, J. Chromatogr. B., 877, 3309 (2009)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c8e95df2-d279-4f00-a7e4-4091d5477565
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.