PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Precipitable water vapour (PWV) variations as observed using GPS during 2021 forest fres in Southwestern Turkey

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Devastating forest fires occurred in the southwestern part of Turkey in summer 2021. Besides the fire itself, air quality standards also drastically dropped. Mugla and Antalya were affected the most by the forest fires. Also, precipitable water vapour (PWV) values show different behaviours from the climate typical. Precipitation, temperature, and pressure parameters were investigated, and no anomalies were found. Particulate matters and other pollutants resulting from forest fires were the remaining indicators behind the PWV fluctuations. The relation between PWV and particulate matters from 2.5 to 10 microns (PM10) was investigated at nine Global Positioning System (GPS) stations located at Antalya and Mugla using 15 air quality monitoring stations. The PWV analysis results show a sudden increase in PWV during the forest fires at most GPS stations. After the fires, PWV values decreased over time. However, PWV values were still higher than before the fires. Furthermore, the mean value, the maximum values, and the standard deviation of PM10 during and after the forest fires were investigated. Results show that the PM10 values were in line with the forest fires effects and correlated with the distance between air quality monitoring stations and the forest fire. Most air quality monitoring stations have higher maximum and average PM10 values during the forest fires than after the forest fires. The correlation coefficient between the two datasets shows a high correlation during the forest fires at all the GPS stations. Therefore, results indicate that, as the PM10 concentration increases, PWV values also increase.
Czasopismo
Rocznik
Strony
1937--1946
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
  • Department of Geomatics Engineering, Faculty of Engineering, Zonguldak Bulent Ecevit University, 67100 Zonguldak, Turkey
Bibliografia
  • 1. Atasoy A, Geçen R (2014) Forest fires occurred on border area between Turkey (Hatay) and Syria. Procd Soc Behv 120:680–685. https://doi.org/10.1016/J.SBSPRO.2014.02.149
  • 2. Augusto S, Ratola N, Tarín-Carrasco P, Jiménez-Guerrero P, Turco M, Schuhmacher M, Costa S, Teixeira JP, Costa C (2020) Population exposure to particulate-matter and related mortality due to the Portuguese wildfires in October 2017 driven by storm Ophelia. Environ Int 144:106056. https://doi.org/10.1016/j.envint.2020.106056
  • 3. Baker JCA, Spracklen DV (2019) Climate benefits of intact amazon forests and the biophysical consequences of disturbance. Front For Global Change. https://doi.org/10.3389/FFGC.2019.00047
  • 4. Bevis M, Businger S, Herring TA, Rocken C, Anthes RA, Ware RH (1992) GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system. J Geophys Res Atmos 97(D14):15787–15801. https://doi.org/10.1029/92JD01517
  • 5. Bevis M, Chiswell S, Hering TA, Anthes R, Rocken C, Ware R (1994) GPS meteorology: mapping zenith wet delays onto precipitable water. J Appl Meteorol 33:379–386. https://doi.org/10.1175/1520-0450(1994)033%3c0379:GMMZWD%3e2.0.CO;2
  • 6. Butt EW, Conibear L, Reddington CL, Darbyshire E, Morgan WT, Coe H, Artaxo P, Brito J, Knote C, Spracklen DV (2020) Large air quality and human health impacts due to Amazon forest and vegetation fires. Env Res Com 2(9):095001. https://doi.org/10.1088/2515-7620/ABB0DB
  • 7. Elvan OD, Birben Ü, Özkan UY, Yıldırım HT (2021) Türker YÖ (2021) Forest fire and law: an analysis of Turkish forest fire legislation based on food and agriculture organization criteria. Fire Ecol 17(1):1–15. https://doi.org/10.1186/S42408-021-00102-7
  • 8. Guo L, Ma Y, Tigabu M, Guo X, Zheng W, Guo F (2020a) Emission of atmospheric pollutants during forest fire in boreal region of China. Environ Pollut 264:114709. https://doi.org/10.1016/j.envpol.2020.114709
  • 9. Guo M, Zhang H, Xia P (2020) A method for predicting short-time changes in fine particulate matter (PM2.5) mass concentration based on the global navigation satellite system zenith tropospheric delay. Meteorol Appl 27:E1866. https://doi.org/10.1002/met.1866
  • 10. Guo J, Hou R, Zhou M, Jin X, Li C, Liu X, Gao H (2021) Monitoring 2019 forest fires in Southeastern Australia with GPS technique. Remote Sens 13:386. https://doi.org/10.3390/rs13030386
  • 11. Gürbüz G, Görmüş KS, Altan U (2020) Investigation into the effect of atmospheric particulate matter (PM10) concentrations on GNSS estimated zenith wet delay (in Turkish). Afyon Kocatepe Univ J Sci Eng 20(3):472–478. https://doi.org/10.35414/akufemubid.705455
  • 12. Gurbuz G (2021) On variations of the decadal precipitable water vapor (PWV) over Turkey. Adv Space Res 68(1):292–300. https://doi.org/10.1016/j.asr.2021.03.010
  • 13. He H, Lu W (2020) Comparison of three prediction strategies within PM 2.5 and PM 10 monitoring networks. Atmos Pollut Res 11:590–597. https://doi.org/10.1016/j.apr.2019.12.010
  • 14. Herring TA, King RW, McClusky SC (2015) Introduction to GAMIT/GLOBK 10.6. Massachusetts Institute of Technology, Cambridge
  • 15. Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A (2015) The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525(7569):367–371. https://doi.org/10.1038/nature15371
  • 16. Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. In: Ocean Dynamics. Springer Verlag. https://doi.org/10.1007/s10236-006-0086
  • 17. Mekik C, Deniz I (2017) Modelling and validation of the weighted mean temperature for Turkey. Meteorol Appl 24(1):92–100. https://doi.org/10.1002/met.1608
  • 18. Pacione R, Bock O, Dousa J (2014) GNSS atmospheric water vapour retrieval methods. In: Proceedings of COST action ES1206 - GNSS4SWEC Advanced GNSS Tropospheric Products for Monitoring Severe Weather Events and Climate Workshop, Munich, Germany, 26–28 Feb.
  • 19. Sánchez-Balseca J, Pérez-Foguet A (2020) Modelling hourly spatio-temporal PM25 concentration in wildfire scenarios using dynamic linear models. Atms Res 242:104999. https://doi.org/10.1016/j.atmosres.2020.104999
  • 20. Sevinc V, Kucuk O, Goltas M (2020) A bayesian network model for prediction and analysis of possible forest fire causes. Forest Ecol Manag 457:117723. https://doi.org/10.1016/j.foreco.2019.117723
  • 21. Spracklen DV, Arnold SR, Taylor CM (2012) Observations of increased tropical rainfall preceded by air passage over forests. Nature 489(7415):282–285. https://doi.org/10.1038/nature11390
  • 22. Tariq S, ul-Haq Z, Mariam A, Mehmood U, Ahmed W (2021) Assessment of air quality during worst wildfires in Turkey (In Review). https://doi.org/10.21203/rs.3.rs-903604/v1
  • 23. Van Der Werf GR, Randerson JT, Giglio L, Van Leeuwen TT, Chen Y, Rogers BM, Mu M, Van Marle MJE, Morton DC, Collatz GJ, Yokelson RJ, Kasibhatla PS (2017) Global fire emissions estimates during 1997–2016. Earth Syst Sci Data 9(2):697–720. https://doi.org/10.5194/ESSD-9-697-2017
  • 24. Vaquero-Martínez J, Antón M, Román R, Cachorro VE, Wang H, González Abad G, Ritter C (2020) Water vapor satellite products in the European Arctic: an inter-comparison against GPS data. Sci Total Environ 741:140335. https://doi.org/10.1016/j.scitotenv.2020.140335
  • 25. Wang J, Zhang L, Dai A (2005) Global estimates of water-vapor-weighted mean temperature of the atmosphere for GPS applications. J Geophys Res Atmos. https://doi.org/10.1029/2005JD006215
  • 26. Wen H, Dang Y, Li L (2020) Short-Term PM2.5 concentration prediction by combining GNSS and meteorological factors. IEEE Access 8:115202–115216. https://doi.org/10.1109/ACCESS.2020.3003580
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c8e93dee-93ed-4d7b-89c6-c66f6297ea14
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.