PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mitigating methane emissions in chili farming with sustainable agricultural practices

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The appropriate use of fertilizers and mulches can reduce methane emissions in chili cultivation. This research seeks to assess the impact of various conditions on methane emissions, encompassing chili cultivation under the following scenarios: absence of fertilizers, application of organic fertilizers, use of NPK (nitrogen, phosphorus, and potassium) fertilizers, absence of mulch, utilization of organic mulch, and application of inorganic mulch. Fertilizer application was combined with mulching to assess their impact on methane emissions. The study was conducted at two different sites with similar soil types. NPK levels were also measured to determine their correlation with methane emissions. The findings show that applying NPK fertilizers boosts the levels of soil nutrients, such as nitrogen (N), phosphorus (P), and potassium (K), while organic fertilizers contribute to an increase in soil organic carbon content. The application of organic mulch increases soil NPK levels while reducing methane emissions. In contrast, the use of plastic mulch significantly increases methane emissions, particularly when combined with NPK fertilizers. Soil nitrogen levels show a correlation with methane emissions exceeding 90%, while phosphorus and potassium exhibit moderate relationships with methane emissions (72%). The results of this research are anticipated to offer valuable insights into optimal fertilization and mulching practices for chili cultivation, with the aim of reducing methane emissions.
Słowa kluczowe
Twórcy
  • Doctoral Programme of Agricultural Engineering Science, Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora No. 1 Bulaksumur Sleman, Yogyakarta, 55281 Indonesia
  • BMKG - Climatology Station of Yogyakarta, Jl. Kabupaten Km. 5.5 Duwet, Sendangadi, Mlati, Sleman, Yogyakarta, 55284, Indonesia
  • Department of Agricultural and Biosystems Engineering, Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora No. 1 Bulaksumur Sleman, Yogyakarta, 55281, Indonesia
  • Center of Land Resources Management, Universitas Gadjah Mada, Jl. Kuningan, Karang Malang, Caturtunggal, Depok, Sleman, Yogyakarta, 55281, Indonesia
autor
  • Center for Climate Change, Indonesia Agency for Meteorology Climatology and Geophysics (BMKG), Jl. Angkasa I, No.2 Kemayoran, Jakarta, 10610, Indonesia
  • Research Center for Environmental and Clean Technology, National Research and Innovation Agency (BRIN), Jl. Sangkuriang, Bandung 40135, Indonesia
  • BMKG - Climatology Station of Yogyakarta, Jl. Kabupaten Km. 5.5 Duwet, Sendangadi, Mlati, Sleman, Yogyakarta, 55284, Indonesia
  • Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora No. 1 Bulaksumur Sleman, Yogyakarta, 55281, Indonesia
  • Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora No. 1 Bulaksumur Sleman, Yogyakarta, 55281, Indonesia
Bibliografia
  • 1. Agus, F. (2013). Soil and carbon conservation for climate change mitigation and enhancing sustainability of agricultural development. Pengemb. Inov. Pertan. 6, 23–33.
  • 2. Bationo, A., Kihara, J., Vanlauwe, B., Waswa, B., Kimetu, J. (2007). Soil organic carbon dynamics, functions and management in West African agro-ecosystems. Agric. Syst. 94, 13–25. https://doi.org/ https://doi.org/10.1016/j.agsy.2005.08.011 functions and management in West African agro-ecosystems. Agric. Syst. 94, 13–25. https://doi.org/ https://doi.org/10.1016/j.agsy.2005.08.011
  • 3. Bavin, T.K., Griffis, T.J., Baker, J.M., Venterea, R.T. (2009). Impact of reduced tillage and cover cropping on the greenhouse gas budget of a maize/ soybean rotation ecosystem. Agric. Ecosyst. Environ. 134, 234–242. https://doi.org/10.1016/J. AGEE.2009.07.005
  • 4. Benny, N., Shams, R., Dash, K.K., Pandey, V.K., Bashir, O. (2023). Recent trends in utilization of citrus fruits in production of eco-enzyme. J. Agric. Food Res. 13, 100657. https://doi.org/10.1016/j. jafr.2023.100657
  • 5. Bhunia, G.S., Shit, P.K., Maiti, R. (2018). Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon (SOC). J. Saudi Soc. Agric. Sci. 17, 114–126. https://doi.org/https://doi.org/10.1016/j.jssas.2016.02.001
  • 6. Chen, H., Zhao, Y., Feng, H., Liu, J., Si, B., Zhang, A., Chen, J., Cheng, G., Sun, B., Pi, X., Dyck, M. (2017). Effects of straw and plastic film mulching on greenhouse gas emissions in Loess Plateau, China: A field study of 2 consecutive wheat-maize rotation cycles. Sci. Total Environ. 579, 814–824. https://doi.org/10.1016/J.SCITOTENV.2016.11.022
  • 7. Collier, S.M., Ruark, M.D., Oates, L.G., Jokela, W.E., Dell, C.J. (2014). Measurement of greenhouse gas flux from agricultural soils using static chambers. J. Vis. Exp. 1–8. https://doi.org/10.3791/52110
  • 8. Cuello, J.P., Hwang, H.Y., Gutierrez, J., Kim, S.Y., Kim, P.J. (2015). Impact of plastic film mulching on increasing greenhouse gas emissions in temperate upland soil during maize cultivation. Appl. Soil Ecol. 91, 48–57. https://doi.org/10.1016/J.APSOIL.2015.02.007
  • 9. Dassonville, F., Renault, P., & Vallès, V. (2004). A model describing the interactions between anaerobic microbiology and geochemistry in a soil amended with glucose and nitrate. European Journal of Soil Science, 55(1), 29–45. https://doi.org/10.1046/j.1365-2389.2004.00594.x
  • 10. Della Chiesa, T., Piñeiro, G., Del Grosso, S.J., Parton, W.J., Araujo, P.I., Yahdjian, L. (2022). Higher than expected N2O emissions from soybean crops in the Pampas Region of Argentina: Estimates from DayCent simulations and field measurements. Sci. Total Environ. 835, 155408. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.155408
  • 11. Foley, J.A., Ramankutty, N., Brauman, K.A., Cassidy, E.S., Gerber, J.S., Johnston, M., Mueller, N.D., O’Connell, C., Ray, D.K., West, P.C., Balzer, C., Bennett, E.M., Carpenter, S.R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., Tilman, D., Zaks, D.P.M. (2011). Solutions for a cultivated planet. Nature 478, 337–342. https://doi.org/10.1038/nature10452
  • 12. Gilbert, N. (2012). One-third of our greenhouse gas emissions come from agriculture. Nature 1–2. https://doi.org/10.1038/nature.2012.11708
  • 13. Gonzaga, L.C., Zotelli, L. do C., de Castro, S.G.Q., de Oliveira, B.G., Bordonal, R. de O., Cantarella, H., Carvalho, J.L.N. (2019). Implications of sugarcane straw removal for soil greenhouse gas emissions in São Paulo State, Brazil. Bioenergy Res. 12, 843– 857. https://doi.org/10.1007/s12155-019-10006-9
  • 14. Guo, C., Liu, X. (2022). Effect of soil mulching on agricultural greenhouse gas emissions in China: A meta-analysis. PLoS One 17, e0262120. https://doi.org/10.1371/JOURNAL.PONE.0262120
  • 15. He, Z., Ding, B., Pei, S., Cao, H., Liang, J., Li, Z. (2023). The impact of organic fertilizer replacement on greenhouse gas emissions and its influencing factors. Sci. Total Environ. 905, 166917. https://doi.org/10.1016/J.SCITOTENV.2023.166917
  • 16. Hilmawan, R., Clark, J. (2019). An investigation of the resource curse in Indonesia. Resour. Policy 64, 101483. https://doi.org/10.1016/J. RESOURPOL.2019.101483
  • 17. Huang, R., Liu, J., He, X., Xie, D., Ni, J., Xu, C., Zhang, Y., Ci, E., Wang, Z., Gao, M. (2020). Reduced mineral fertilization coupled with straw return in field mesocosm vegetable cultivation helps to coordinate greenhouse gas emissions and vegetable production. J. Soils Sediments 20, 1834–1845. https://doi.org/10.1007/s11368-019-02477-2
  • 18. Huang, X., Xu, X., Wang, Q., Zhang, L., Gao, X., Chen, L. (2019). Assessment of agricultural carbon emissions and their spatiotemporal changes in China, 1997–2016. Int. J. Environ. Res. Public Health 16, 6–7. https://doi.org/10.3390/ijerph16173105
  • 19. Islam, S.M.M., Gaihre, Y.K., Islam, M.R., Akter, M., Al Mahmud, A., Singh, U., Sander, B.O. (2020). Effects of water management on greenhouse gas emissions from farmers’ rice fields in Bangladesh. Sci. Total Environ. 734. https://doi.org/10.1016/j.scitotenv.2020.139382
  • 20. Jeong, S.T., Cho, S.R., Lee, J.G., Kim, P.J., Kim, G.W. (2019). Composting and compost application: Trade-off between greenhouse gas emission and soil carbon sequestration in whole rice cropping system. J. Clean. Prod. 212, 1132–1142. https://doi.org/10.1016/j.jclepro.2018.12.011
  • 21. Jeong, S.T., Kim, G.W., Hwang, H.Y., Kim, P.J., Kim, S.Y. (2018). Beneficial effect of compost utilization on reducing greenhouse gas emissions in a rice cultivation system through the overall management chain. Sci. Total Environ. 613–614, 115–122. https://doi.org/10.1016/j.scitotenv.2017.09.001
  • 22. Jia, Q., Zhang, H., Wang, J., Xiao, X., Chang, S., Zhang, C., Liu, Y., Hou, F. (2021). Planting practices and mulching materials improve maize net ecosystem C budget, global warming potential and production in semi-arid regions. Soil Tillage Res. 207, 104850. https://doi.org/10.1016/J. STILL.2020.104850
  • 23. Jose, V.S., Sejian, V., Bagath, M., Ratnakaran, A.P., Lees, A.M., Al-Hosni, Y.A.S., Sullivan, M., Bhatta, R., Gaughan, J.B. (2016). Modeling of Greenhouse Gas Emission from Livestock. Front. Environ. Sci. 4, 1–11. https://doi.org/10.3389/fenvs.2016.00027
  • 24. Kim, G.W., Alam, M.A., Lee, J.J., Kim, G.Y., Kim, P.J., Khan, M.I. (2017a). Assessment of direct carbon dioxide emission factor from urea fertilizer in temperate upland soil during warm and cold cropping season. Eur. J. Soil Biol. 83, 76–83. https://doi.org/10.1016/j.ejsobi.2017.10.005
  • 25. Kim, G.W., Das, S., Hwang, H.Y., Kim, P.J. (2017b). Nitrous oxide emissions from soils amended by cover-crops and under plastic film mulching: Fluxes, emission factors and yield-scaled emissions. Atmos. Environ. 152, 377–388. https://doi.org/10.1016/j. atmosenv.2017.01.007
  • 26. Kim, G.W., Lim, J.Y., Islam Bhuiyan, M.S., Das, S., Khan, M.I., Kim, P.J. (2022). Investigating the arable land that is the main contributor to global warming between paddy and upland vegetable crops under excessive nitrogen fertilization. J. Clean. Prod. 346, 131197. https://doi.org/https://doi.org/10.1016/j.jclepro.2022.131197
  • 27. Lal, R. (2004). Material Soil Carbon Pool and the Global Carbon Cycle: Supplemental Material 304.
  • 28. Lal, R., Negassa, W., Lorenz, K. (2015). Carbon sequestration in soil. Curr. Opin. Environ. Sustain. 15, 79–86. https://doi.org/https://doi.org/10.1016/j. cosust.2015.09.002
  • 29. Lee, J.G., Cho, S.R., Jeong, S.T., Hwang, H.Y., Kim, P.J. (2019). Different response of plastic film mulching on greenhouse gas intensity (GHGI) between chemical and organic fertilization in maize upland soil. Sci. Total Environ. 696, 133827. https://doi.org/10.1016/j.scitotenv.2019.133827
  • 30. Li, C., Frolking, S., Frolking, T.A. (1992). A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. J. Geophys. Res. Atmos. 97, 9759–9776.
  • 31. Li, X., Sarah, P. (2003). Enzyme activities along a climatic transect in the Judean Desert. CATENA 53, 349–363. https://doi.org/10.1016/ S0341-8162(03)00087-0
  • 32. Linquist, B.A., Adviento-Borbe, M.A., Pittelkow, C.M., van Kessel, C., van Groenigen, K.J. (2012). Fertilizer management practices and greenhouse gas emissions from rice systems: A quantitative review and analysis. F. Crop. Res. 135, 10–21. https://doi.org/10.1016/J.FCR.2012.06.007
  • 33. Liu, W., Hussain, S., Wu, L., Qin, Z., Li, X., Lu, J., Khan, F., Cao, W., Geng, M. (2016). Greenhouse gas emissions, soil quality, and crop productivity from a mono-rice cultivation system as influenced by fallow season straw management. Environ. Sci. Pollut. Res. 23, 315–328. https://doi.org/10.1007/ s11356-015-5227-7
  • 34. Ma, D., Chen, L., Qu, H., Wang, Y., Misselbrook, T., Jiang, R. (2018). Impacts of plastic film mulching on crop yields, soil water, nitrate, and organic carbon in Northwestern China: A meta-analysis. Agric. Water Manag. 202, 166–173. https://doi.org/10.1016/J. AGWAT.2018.02.001
  • 35. Ma, K., Conrad, R., Lu, Y. (2013). Dry/wet cycles change the activity and population dynamics of methanotrophs in rice field soil. Appl. Environ. Microbiol. 79, 4932–4939. https://doi.org/10.1128/AEM.00850-13/SUPPL_FILE/ZAM999104607SO1.PDF
  • 36. Molina, S., Ruiz, S., Gomez-Soriano, J., & Olcina- Girona, M. (2023). Impact of hydrogen substitution for stable lean operation on spark ignition engines fueled by compressed natural gas. Results in Engineering, 17, 100799.
  • 37. Olufemi, D.O., Adejoro, S.A., Ewulo, B.S. (2022). Effect of Nutrient Sources and Their Interactions on Soil Oxidation-Reduction Reaction under Field Capacity and Waterlogged Conditions. Trends Agric. Sci. 1, 19–27. https://doi.org/10.17311/TAS.2022.19.27
  • 38. Ostad-Ali-Askari, K., Shayannejad, M., Eslamian, S., Zamani, F., Shojaei, N., Navabpour, B., Majidifar, Z., Sadri, A., Ghasemi-Siani, Z., Nourozi, H., Vafaei, O., Homayouni, S.-M.-A. (2017). Deficit Irrigation. Handb. Drought Water Scarcity 375–391. https://doi.org/10.1201/9781315226774-18
  • 39. Pandey, D., Agrawal, M., Bohra, J.S. (2012). Greenhouse gas emissions from rice crop with different tillage permutations in rice-wheat system. Agric. Ecosyst. Environ. 159, 133–144. https://doi.org/10.1016/j.agee.2012.07.008
  • 40. Petaja, G., Ancāns, R., Bārdule, A., Spalva, G., Meļņiks, R. N., Purviņa, D., & Lazdiņš, A. (2023). Carbon dioxide, methane and nitrous oxide fluxes from tree stems in silver birch and black alder stands with drained and naturally wet peat soils. Forests, 14(3). https://doi.org/10.3390/f14030521
  • 41. Priya Bhattacharya, K. K. Bandyopadhyay, P. Krishnan, P.P. Maity, T.J., Purakayastha, A. Bhatia, B. Chakrabarti, S.N Kumar, Sujan Adak, R.T., Meenakshi (2023). Impact of tillage and residue management on greenhouse gases emissions and global warming potential of winter wheat in a semi-arid climate. J. Agrometeorol. 25(1), 105–112.
  • 42. Rafique, R., Kumar, S., Luo, Y., Xu, X., Li, D., Zhang, W., Asam, Z. ul Z. (2014). Estimation of greenhouse gases (N2O, CH4 and CO2) from no-till cropland under increased temperature and altered precipitation regime: A DAYCENT model approach. Glob. Planet. Change 118, 106–114. https://doi.org/10.1016/j.gloplacha.2014.05.001
  • 43. Rahayu, L., Febriani, D. (2021). The Efficiency of Red Chili Farming In Merapi Eruption Area, Yogyakarta, Indonesia. E3S Web Conf. 232, 01023. https://doi.org/10.1051/E3SCONF/202123201023
  • 44. Riyani, D., Gusmayanti, E., Pramulya, M. (2021). Dampak Pemberian Pupuk Hayati dan NPK Terhadap Emisi CO2 Pada Perkebunan Kelapa Sawit Di Lahan Gambut. J. Ilmu Lingkung. 19, 219–226. https://doi.org/10.14710/jil.19.2.219-226
  • 45. Rosenzweig, C., Tubiello, F.N. (2007). Adaptation and mitigation strategies in agriculture: An analysis of potential synergies. Mitig. Adapt. Strateg. Glob. Chang. 12, 855–873. https://doi.org/10.1007/ s11027-007-9103-8
  • 46. Shaukat, M., Muhammad, S., Maas, E.D.V.L., Khaliq, T., Ahmad, A. (2022). Predicting methane emissions from paddy rice soils under biochar and nitrogen addition using DNDC model. Ecol. Modell. 466, 109896. https://doi.org/https://doi.org/10.1016/j.ecolmodel.2022.109896
  • 47. Smith, P. (2016). Soil carbon sequestration and biochar as negative emission technologies. Glob. Chang. Biol. 22, 1315–1324. https://doi.org/10.1111/GCB.13178
  • 48. Smith, P. (2008). Land use change and soil organic carbon dynamics. Nutr. Cycl. Agroecosystems 81, 169–178. https://doi.org/10.1007/ s10705-007-9138-y
  • 49. Smith, P., Soussana, J.F., Angers, D., Schipper, L., Chenu, C., Rasse, D.P., Batjes, N.H., van Egmond, F., McNeill, S., Kuhnert, M., Arias-Navarro, C., Olesen, J.E., Chirinda, N., Fornara, D., Wollenberg, E., Álvaro-Fuentes, J., Sanz-Cobena, A., Klumpp, K. (2020). How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Glob. Chang. Biol. 26, 219–241. https://doi.org/10.1111/GCB.14815
  • 50. Song, H.J., Lee, J.H., Canatoy, R.C., Lee, J.G., Kim, P.J. (2021). Strong mitigation of greenhouse gas emission impact via aerobic short pre-digestion of green manure amended soils during rice cropping. Sci. Total Environ. 761, 143193. https://doi.org/10.1016/j.scitotenv.2020.143193
  • 51. Tao, Z., Liu, Y., Li, S., Li, B., Fan, X., Liu, C., Hu, C., Liu, H., Li, Z. (2024). Global warming potential assessment under reclaimed water and livestock wastewater irrigation coupled with co-application of inhibitors and biochar. J. Environ. Manage. 353, 120143. https://doi.org/https://doi.org/10.1016/j. jenvman.2024.120143
  • 52. Voltr, V., Wollnerová, J., Fuksa, P., Hruška, M. (2021). Influence of tillage on the production inputs, outputs, soil compaction and GHG emissions. Agric. 11. https://doi.org/10.3390/agriculture11050456
  • 53. Wang, X., Zou, C., Zhang, Y., Shi, X., Liu, J., Fan, S., Liu, Y., Du, Y., Zhao, Q., Tan, Y., Wu, C., Chen, X. (2018). Environmental impacts of pepper (Capsicum annuum L) production affected by nutrient management: A case study in southwest China. J. Clean. Prod. 171, 934–943. https://doi.org/10.1016/j.jclepro.2017.09.258
  • 54. Wu, J., Lu, Y., Wang, H., & Li, G. (2023). Effects of nitrogen and phosphorus additions on CH4 flux in wet meadow of Qinghai-Tibet Plateau. Science of the Total Environment, 887. https://doi.org/10.1016/j.scitotenv.2023.163448
  • 55. Yagioka, A., Komatsuzaki, M., Kaneko, N., Ueno, H. (2015). Effect of no-tillage with weed cover mulching versus conventional tillage on global warming potential and nitrate leaching. Agric. Ecosyst. Environ. 200, 42–53. https://doi.org/10.1016/j.agee.2014.09.011
  • 56. Yang, W., Hu, Y., Yang, M., Wen, H., Jiao, Y. (2023). Methane uptake and nitrous oxide emission in saline soil showed high sensitivity to nitrogen fertilization addition. Agronomy 13. https://doi.org/10.3390/ agronomy13020473
  • 57. Yoro, K.O., Daramola, M.O. (2020). CO2 emission sources, greenhouse gases, and the global warming effect, in: Advances in Carbon Capture. Elsevier, 3–28.
  • 58. Yuan, J., Yuan, Y., Zhu, Y., Cao, L. (2018). Effects of different fertilizers on methane emissions and methanogenic community structures in paddy rhizosphere soil. Sci. Total Environ. 627, 770–781. https://doi.org/10.1016/J.SCITOTENV.2018.01.233
  • 59. Zaman, M., Heng, L., Müller, C. (2021). Measuring emission of agricultural greenhouse gases and developing mitigation options using nuclear and related techniques: Applications of nuclear techniques for GHGs, Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques: Applications of Nuclear Techniques for GHGs. https://doi.org/10.1007/978-3-030-55396-8
  • 60. Zhang, F., Ma, X., Gao, X., Cao, H., Liu, F., Wang, J., Guo, G., Liang, T., Wang, Y., Chen, X., Wang, X. (2023). Innovative nitrogen management strategy reduced N2O emission while maintaining high pepper yield in subtropical condition. Agric. Ecosyst. Environ. 354, 108565. https://doi.org/https://doi.org/10.1016/j.agee.2023.108565
  • 61. Zhang, W., Sheng, R., Zhang, M., Xiong, G., Hou, H., Li, S., Wei, W. (2018). Effects of continuous manure application on methanogenic and methanotrophic communities and methane production potentials in rice paddy soil. Agric. Ecosyst. Environ. 258, 121–128. https://doi.org/10.1016/J.AGEE.2018.02.018
  • 62. Zhou, D., Shah, T., Ali, S., Ahmad, W., Din, I.U., Ilyas, A. (2019). Factors affecting household food security in rural northern hinterland of Pakistan. J. Saudi Soc. Agric. Sci. 18, 201–210.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c8e607b0-4426-490c-9db7-3fbbdf539dff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.