PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Degree of paraxiality of a multi-Gaussian beam diffracted by a circular aperture

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The degree of paraxiality (DOP) of a diffracted multi-Gaussian beam is discussed. It is shown that the DOP of the multi-Gaussian beam will decrease as it is diffracted by a circular aperture, and the DOP of the diffracted multi-Gaussian beam is influenced by both the aperture radius and the characteristics of beam source. As an example, the dependence of the DOP on the aperture radius, the boundary characteristic, and the beam waist width is investigated.
Czasopismo
Rocznik
Strony
621--631
Opis fizyczny
Bibliogr. 35 poz., rys.
Twórcy
  • Department of Physics, Sichuan Normal University, Chengdu 610068, China
  • Department of Physics, Sichuan Normal University, Chengdu 610068, China
autor
  • Department of Physics, Sichuan Normal University, Chengdu 610068, China
autor
  • Department of Physics, Sichuan Normal University, Chengdu 610068, China
autor
  • Department of Physics, Sichuan Normal University, Chengdu 610068, China
  • towerwang@126.com
Bibliografia
  • [1] MEI Z., GU J., Comparative studies of paraxial and nonparaxial vectorial elegant Laguerre-Gaussian beams, Optics Express 17, 2009: 14865-14871.
  • [2] ZHANG P., HU Y., CANNAN D., SALANDRINO A., LI T., MORANDOTTI R., ZHANG X., CHEN Z., Generation of linear and nonlinear nonparaxial accelerating beams, Optics Letters 37, 2012: 2820-2822.
  • [3] DUAN K., LÜ B., Nonparaxial analysis of far-field properties of Gaussian beams diffracted at a circular aperture, Optics Express 11, 2003: 1474-1480.
  • [4] HUANG K., WANG X., LIU Z., Nonparaxial propagation of a rectangular multi-Gaussian Schell-model beam, Optics Communications 356, 2015: 25-33.
  • [5] LÜ B., DUAN K., Nonparaxial propagation of vectorial Gaussian beams diffracted at a circular aperture, Optics Letters 28, 2003: 2440-2442.
  • [6] DUAN K., LÜ B., Polarization properties of vectorial nonparaxial Gaussian beams in the far field, Optics Letters 30, 2005: 308-310.
  • [7] GUO L., CHEN L., LIN R., ZHANG M., DONG Y., CHEN Y., CAI Y., Nonparaxial propagation properties of specially correlated radially polarized beams in free space, Applied Sciences 9, 2019: 997-1014.
  • [8] DUAN K., LÜ B., Partially coherent nonparaxial beams, Optics Letters 29, 2004: 800-802.
  • [9] MOON H., CHOUGH Y., AN K., Cylindrical microcavity laser based on the evanescent-wave-coupled gain, Physical Review Letters 85, 2000: 3161-3164.
  • [10] ZHANG Z., PU J., WANG X., Focusing of partially coherent Bessel–Gaussian beams through a highnumerical aperture objective, Optics Letters 33, 2008: 49-51.
  • [11] CHEN B., ZHANG Z., PU J., Tight focusing of partially coherent and circularly polarized vortex beams, Journal of Optical Society of America A 26, 2009: 862-869.
  • [12] ASHKIN A., Trapping of atoms by resonance radiation pressure, Physical Review Letters 40, 1978: 729-732.
  • [13] SUNG S., LEE Y., Trapping of a micro-bubble by non-paraxial Gaussian beam: Computation using the FDTD method, Optics Express 16, 2008: 3463-3473.
  • [14] GOMBKÖTŐ B., KOPPA P., SÜTŐ A., LŐRINCZ E., Computer simulation of reflective volume grating holographic data storage, Journal of Optical Society of America A 24, 2007: 2075-2081.
  • [15] SUNG Y., SHEPPARD C.J.R., Three-dimensional imaging by partially coherent light under nonparaxial condition, Journal of Optical Society of America A 28, 2011: 554-559.
  • [16] EL GAWHARY O., SEVERINI S., Degree of paraxiality for monochromatic light beams, Optics Letters 33, 2008: 1360-1362.
  • [17] EL GAWHARY O., SEVERINI S., Localization and paraxiality of pseudo-nondiffracting fields, Optics Communications 283, 2010: 2481-2487.
  • [18] DONG Y., ZHANG L., LUO J., WEN W., ZHANG Y., Degree of paraxiality of coherent and partially coherent Airy beams, Optics & Laser Technology 49, 2013: 1-5.
  • [19] DONG Y., WANG F., CAI Y., YAO M., Degree of paraxiality of cylindrical vector partially coherent Laguerre-Gaussian beams, Optics Communications 333, 2014: 237-242.
  • [20] WANG Z., JIANG Z., JI X., WANG T., Degree of paraxiality of an electromagnetic multi-Gaussian Schell-model beam, Journal of Optical Society of America A 36, 2019: 1033-1038.
  • [21] ZHU L., JIANG Z., CHEN K., WANG T., The degree of paraxiality of an anisotropic generalized multi-Gaussian Schell-model beam, Journal of Optical Society of America A 35, 2018: 1034-1038.
  • [22] WANG F., CAI Y., KOROTKOVA O., Degree of paraxiality of a partially coherent field, Journal of Optical Society of America A 27, 2010: 1120-1126.
  • [23] HUANG J., XIANG S., JIANG W., JI X., WANG T., Degree of paraxiality of an electromagnetic fractional multi-Gaussian Schell-model beam, Journal of Optical Society of America A 38, 2021: 1264-1269.
  • [24] EYYUBOĞLU H.T., ARPALI Ç., BAYKAL Y., Flat topped beams and their characteristics in turbulent media, Optics Express 14, 2006: 4196-4207.
  • [25] GAO Y., ZHU B., LIU D., LIN Z., Fractional Fourier transform of flat-topped multi-Gaussian beams, Journal of Optical Society of America A 27, 2010: 358-365.
  • [26] CHEN J., Propagation and transformation of flat-topped multi-Gaussian beams in a general nonsymmetrical apertured double-lens system, Journal of Optical Society of America A 24, 2007: 84-92.
  • [27] GAO Y., ZHU B., LIU D., LIN Z., Propagation of flat-topped multi-Gaussian beams through a double-lens system with apertures, Optics Express 17, 2009: 12753-12766.
  • [28] CAI Y., HU L., Propagation of partially coherent twisted anisotropic Gaussian Schell-model beams through an apertured astigmatic optical system, Optics Letters 31, 2006: 685-687.
  • [29] ZHOU G., Far-field structural property of a Gaussian beam diffracted by a phase aperture, Optics Communications 284, 2011: 8-14.
  • [30] ZHOU G., CHU X., ZHENG J., Analytical structure of an apertured vector Gaussian beam in the far field, Optics Communications 281, 2008: 1929-1934.
  • [31] ZHOU G., Change of the paraxiality of a Gaussian beam diffracted by a circular aperture, Optics Express 17, 2008: 8417-8422.
  • [32] LI Y., LEE H., WOLF E., Effect of edge rounding and sloping of sidewalls on the readout signal of the information pits on optical disks, Optical Engineering 42, 2003: 2707-2720.
  • [33] WANG T., LI X., JI X., ZHAO D., Spectral changes and spectral switches of light waves on scattering from a semisoft boundary medium, Optics Communications 324, 2014: 152-156.
  • [34] GRADSHTEYN S., RYZHIK I.M., Table of Integrals, Series, and Products, Academic Press, New York, 1980.
  • [35] PORRAS M.A., Non-paraxial vectorial moment theory of light beam propagation, Optics Communications 127, 1996: 79-95.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c8e2f1c4-cf92-4a73-a6b3-48c3ef1f7006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.