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Degree of paraxiality of a multi-Gaussian beam 
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The degree of paraxiality (DOP) of a diffracted multi-Gaussian beam is discussed. It is shown that
the DOP of the multi-Gaussian beam will decrease as it is diffracted by a circular aperture, and the
DOP of the diffracted multi-Gaussian beam is influenced by both the aperture radius and the char-
acteristics of beam source. As an example, the dependence of the DOP on the aperture radius, the
boundary characteristic, and the beam waist width is investigated.
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1. Introduction

With the continuous development of laser technology, the researches on the propa-
gation and transformation of light beams have been extended from paraxial field to
non-paraxial field [1-6]. The non-paraxial beam, namely a beam with a large diver-
gence angle or a spot size that is equal to or even smaller than wavelength, can be pro-
duced by the solid-state laser, microcavity, or beams tightly focused with a high
numerical aperture [7-11]. These beams are useful in optical data storage, optical trap-
ping and high-resolution microscopy [12-15]. It is well known that non-paraxial and
paraxial beams are studied using a variety of different theories and approaches. There-
fore, determining whether a beam is paraxial or not is crucial to the thesis. Quantita-
tively describing the paraxiality of beams, which GAWHARY and SEVERINI introduced
in 2008 by defining a physical quantity called degree of paraxiality (DOP), is an effective
method for resolving this issue [16]. In 2010, GAWHARY and SEVERINI generalized the
definition of DOP to make it describe the paraxiality of beams more accurately [17].
Subsequently, the DOP of different beams has been studied, including the Airy beam,
the cylindrical vector partially coherent Laguerre–Gaussian beam, the stochastic elec-
tromagnetic Gaussian Schell-model beam, and others [18-23].

On the other hand, due to its special characteristic of flattened top distribution with
adjustable edges, the multi-Gaussian beams have attracted much attention, especially
its propagation characteristics through turbulence and various optical systems [24-26].
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In practical optical systems, apertures often serve as the limit for laser beams. In this
situation, the aperture will affect the optical characteristics of beams, including
its DOP [27-30]. For example, the DOP of Gaussian beams diffracted by a circular
aperture is smaller than that of non-diffracted Gaussian beams [31]. However, as far
as we know, there is no report on the DOP of the diffracted multi-Gaussian beam. This
will be discussed in this manuscript. Firstly, the analytical expressions for the DOP
and that for the square of the tangent of the far-filed divergence angle of a diffracted
multi-Gaussian beam are derived. And then, the influences of the aperture radius, the
boundary characteristic, and the beam waist width on the DOP and on the far-field
divergence angle are investigated. Additionally, the absolutely decreasing quantity of
the DOP induced by the aperture is discussed by contrasting the DOP values for the
multi-Gaussian beam with and without the aperture.

2. Theory

As shown in Fig. 1, assume that a multi-Gaussian beam diffracted by an aperture
propagates along the z direction from the source plane z = 0 into the half-space z > 0.
The radius of the circular aperture is R, which coincides with the source plane. To
analyze the paraxial characteristics of beams, we introduce the definition of DOP,
which is given by the formula [17]

(1)

where u = pλ, v = qλ, and A0(u, v) is the angular spectrum of the beam in the source
plane with p and q being the coordinates in spatial-frequency domain, and λ denotes
the wavelength in vacuum.

Fig. 1. Illustration of notations.
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For a multi-Gaussian beam, its DOP will be influenced as it is diffracted by a cir-
cular aperture. To illustrate this effect, let us first recall the field expression of the dif-
fracted multi-Gaussian beam [31-33], i.e., 

(2)

where ρ = (x, y) is an arbitrary position vector in the source plane, σ is the beam waist
width of a multi-Gaussian beam, B is a constant, M is a non-negative integer which
can modulate the boundary characteristic of the source, and circ(ξ ) is the aperture func-
tion which can be expressed as

(3)

where ξ = ρ /R . And  is the binomial coefficient, with a form of

(4)

and

(5)

For a diffracted multi-Gaussian beam, the angular spectrum is given by the Fourier
transform of the field function, which can be written as [30]

(6)

On substituting from Eq. (2) into Eq. (6), the angular spectrum of the diffracted
multi-Gaussian beam can be calculated as 

(7)

where b = (u2 + v2)1/2, α = kR and β = R2/σ2. Jn(αb) is the first kind Bessel function
of order n. In order to obtain above equation, the following formula is used [34]
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The square of the absolute value of the angular spectrum |A0(u, v) |2 is defined as the
angular distribution of energy. After some calculations, |A0(u, v) |2 is obtained as shown
in the following:

|A0(u, v) |2 = F1 + F2 (9)

where

(10a)

(10b)

with

(11a)

(11b)

On substituting from Eq. (9) into Eq. (1), and after some calculations, the analytical
expression for the DOP of the diffracted multi-Gaussian beam can be expressed as

(12)
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To explain the behavior of the DOP, we consider the far-field divergence angle
of the diffracted multi-Gaussian beam. The square of the tangent of the far-field
divergence angle beyond the validity of the paraxial approximation can be defined as
follows [35]

(15)

On substituting from Eq. (9) into Eq. (15), and after some calculation, the analyt-
ical expression for the square of the tangent of the far-field divergence angle can be
obtained

(16)

where E and F are given by Eq. (13), and

(17a)

(17b)

In the following, in order to analyze the influence of aperture on the DOP intui-
tively, we define the absolutely decreasing quantity of the DOP as

ΔP = P0 – P (18)

where P is given by Eq. (12), and P0 is the DOP of the multi-Gaussian beam without
the aperture. If we let the aperture function in Eq. (2) equal to unity, Eq. (2) will reduce
to the field of the multi-Gaussian beam without aperture. On substituting this field into
Eq. (6), the angular spectrum of the multi-Gaussian beam without aperture can be cal-
culated as 

(19)

On substituting from Eq. (19) into Eq. (1), after some calculations, we can obtain
the analytical expression for P0 as follows
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(20)

Similarly, we can define the absolutely increasing quantity of the square of the tan-
gent of the far-field divergence angle as

ΔT  = tan2θ – tan2θ0 (21)

where tan2θ is given by Eq. (16), and tan2θ0 is the square of the tangent of the far-field
divergence angle of the multi-Gaussian beam without aperture. On substituting from
Eq. (19) into Eq. (15), the analytical expression for tan2θ0 can be obtained, with the
following form

(22)

3. Numerical simulations

In this section, in accordance with the analytical expressions of  Eq. (12) and Eq. (16),
the influences of the aperture and the characteristics of the beam source, such as the
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Fig. 2. Dependence of the DOP and the absolutely decreasing quantity ΔP on the ratio R /λ for different
boundary characteristic M, respectively. The other parameters are λ = 632.8 nm, σ = 0.6λ.
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aperture radius, the boundary characteristic, and the beam waist width, on the DOP of
a diffracted multi-Gaussian beam will be investigated. 

Figure 2 presents the dependence of the DOP and the absolutely decreasing quan-
tity ΔP on the ratio R /λ for different boundary characteristic M. In Fig. 2(a), it is shown
that when R /λ < 1, the DOP will increase as R /λ increases, and the dependence of the
DOP on the boundary characteristic is not obvious. In the range of R /λ > 1, the DOP
reaches a saturated value, and the larger boundary characteristic is, the smaller saturated
value of the DOP will be. In Fig. 2(b), it is shown that with R /λ increasing, ΔP will
decrease quickly. When the DOP reaches a saturated value, ΔP tends to be zero. More-
over, ΔP will decrease as the value of M  increases, and one can find that the larger
boundary characteristic is, the smaller radius under which the DOP reaches a saturated
value is. 

Figure 3 presents the influence of the beam waist width σ  on the DOP and the ab-
solutely decreasing quantity ΔP. It is shown from Figs. 3(a) and (b) that, as the beam
waist widths σ  are increasing, both the DOP and ΔP will increase. And the beam waist

Fig. 3. Dependence of the DOP and the absolutely decreasing quantity ΔP on the ratio R /λ for different
beam waist width σ, respectively. The other parameters are λ = 632.8 nm, M  = 3.

Fig. 4. Dependence of the square of the tangent of the far-filed divergence angle tan2θ and the absolutely
increasing quantity ΔT on the ratio R /λ for different beam waist width σ, respectively. The other parameters
are λ = 632.8 nm, M  = 3.
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width also plays an important role for the radius under which the DOP and ΔP reach
their saturated values. 

Figure 4 illustrates the variation of the square of the tangent of the far-filed diver-
gence angle tan2θ and the absolutely increasing quantityΔT with the ratio R /λ for dif-
ferent beam waist width σ. In Fig. 4(a), when R /λ < 1, tan2θ shows a trend of sharp
decrease as R /λ increases; while in the range of R /λ > 1, tan2θ tends to be a fixed value,
i.e., the influence of the circular aperture on the far-filed divergence angle is negligible.
Moreover, it is also shown that the larger beam waist width is, the smaller fixed value
will be. In Fig. 4(b), it is shown that ΔT decreases as R /λ increases, until ΔT decreases
to zero. In addition, the smaller beam waist width is, the smaller ΔT will be.

Figure 5 shows the dependence of the DOP and the ΔP on the normalized beam
waist width σ /λ for different radius R. The DOP and ΔP both increase as the normalized
beam waist width σ /λ increases, and when σ /λ becomes large enough, both of them
will reach a saturated value. Furthermore, it is demonstrated from Figs. 5(a) and (b)
that with the radius R increasing, the DOP will increase while ΔP decrease.  

Fig. 5. Dependence of the DOP and the absolutely decreasing quantity ΔP on the normalized beam waist
width σ /λ for different radius R, respectively. The other parameters are λ = 632.8 nm, M  = 3.

Fig. 6. Dependence of the square of the tangent of the far-filed divergence angle tan2θ and the absolutely
increasing quantity ΔT on the normalized beam waist width σ /λ for different radius R, respectively.
The other parameters are λ = 632.8 nm, M  = 3.
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Figure 6 presents the variation of the square of the tangent of the far-filed diver-
gence angle tan2θ and the absolutely increasing quantity ΔT on the normalized beam
waist width σ /λ for different radius R. As shown in Figs. 6(a) and (b), as σ /λ is grad-
ually increasing, tan2θ and ΔT will reach a saturated value after a sharp decrease and
increase, respectively. Additionally, with the radius R increasing, tan2θ and ΔT will
demonstrate a similar behavior, i.e., the larger radius R is, the smaller tan2θ and ΔT
will be.

4. Conclusions

In conclusion, we have obtained the analytical expression for the DOP of the diffracted
multi-Gaussian beam, and discussed the influence of the aperture radius and the char-
acteristics of beam source on the DOP. The result shows that the DOP of the diffracted
multi-Gaussian beam is closely related to the boundary characteristics, the beam waist
width and the radius of circular aperture. It is also shown that when a multi-Gaussian
beam is diffracted by a circular aperture, the DOP will decrease. Moreover, the ana-
lytical expression for the square of the tangent of the far-filed divergence angle has
also been derived, and it is shown that the DOP and the far-field divergence angle show
the opposite curve relationship with the change of the same parameters. It should be
noted that if the boundary characteristic parameter is chosen to be M = 1, the results
obtained in this manuscript will reduce to that of Gaussian beam. The results obtained
in this manuscript may provide a method to modulate the DOP of the diffracted multi
-Gaussian beam, and may have some potential applications in areas such as tight fo-
cusing and micro-lithographs.
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