PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modern Highly Energetic Materials for the Production of Gun Powders and Rocket Propellants in Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Polish technology for the production of propellants uses methods which have been known for many years. The continuously developing market requires producers to enhance the parameters of their munitions in order to keep up with demands. Therefore, it is necessary to research and constantly implement new types of gun powders and rocket propellants. In the present work, highly energetic compounds were characterized as constituents of current propellants. Their advantages and disadvantages are described. The requirements for new materials, concerning toxicity, environmental impact, and safety are presented. It is shown that by using modern energetic compounds it is possible to obtain low-vulnerability or insensitive ammunitions. Finally, the situation in the Polish market is briefly described.
Rocznik
Strony
281--294
Opis fizyczny
Bibliogr. 69 poz., rys., tab.
Twórcy
  • Łukasiewicz Research Network - Institute of Industrial Organic Chemistry, 6 Annopol St., 03-236 Warsaw, Poland
  • Łukasiewicz Research Network - Institute of Industrial Organic Chemistry, 6 Annopol St., 03-236 Warsaw, Poland
Bibliografia
  • [1] Florczak, B. Solid Composite Rocket Propellants Based on HTPB Rubber.(in Polish) Instytut Przemysłu Organicznego, Warszawa, 2016; ISBN 978-83-914922-4-6.
  • [2] Vellaisamy, U.; Biswas, S. Effect of Metal Additives on Neutralization and Characteristics of AP/HTPB Solid Propellants. Combust. Flame 2020, 221: 326-337.
  • [3] Rarata, G.; Surmacz, P. Modern Solid Rocket Propellants. (in Polish) Pr. Inst. Lotnictwa 2009, 202: 112.
  • [4] Szala, M. Development Trends in Artillery Ammunition Propellants. Mater. Wysokoenerg. 2020, 12(2): 5-16; DOI: 10.22211/matwys/0196.
  • [5] Zhai, J.; Yang, R.; Li, J. Catalytic Thermal Decomposition and Combustion of Composite BAMO-THF Propellants. Combust. Flame 2008, 154(3): 473-477.
  • [6] Chmielarek, M.; Maksimowski, P.; Cieślak, K.; Gołofit, T.; Drozd, H. Study of the Synthesis of GAP-HTPB-GAP Liquid Copolymer. Cent. Eur. J. Energ. Mater. 2020, 17(4): 566-583; DOI: 10.22211/cejem/131803.
  • [7] Colclough, M.E.; Desai, H.; Millar, R.W.; Paul, N.C.; Stewart, M.J.; Golding, P. Energetic Polymers as Binders in Composite Propellants and Explosives. Polym. Adv. Technol. 1993, 5: 554-560; DOI: 10.1002/pat.1994.220050914.
  • [8] Trache, D.; Klapötke, T.M.; Maiz, L.; Abd-Elghany, M.; DeLuca, L.T. Recent Advances in New Oxidizers for Solid Rocket Propulsion. Green Chem. 2017, 19(20): 4711-4736; DOI: 10.1039/C7GC01928A.
  • [9] Jos, J.; Mathew, S. Ammonium Nitrate as an Eco-Friendly Oxidizer for Composite Solid Propellants: Promises and Challenges. Crit. Rev. Solid State Mater. Sci. 2017, 42(6): 470-498; DOI: 10.1080/10408436.2016.1244642.
  • [10] Syczewski, M.; Cieślowska-Glińska, I. Dinitroamine (DNA): Compounds with‒N(NO2)2 Group as Potential Components of Energetic Materials. (in Polish) Wiadomości Chemiczne 2000, 54(5-6): 473-497.
  • [11] Stenmark, H.; Sjökvist, S. Toxicological Testing of ADN, GUDN, and FOX-7. Proc. 41st Int. Annu. Conf. Fraunhofer ICT, Karlsruhe, Germany, 2010, 56/51-53.
  • [12] Talawar, M.B.; Sivabalan, R.; Anniyappan, M.; Gore, G.M.; Asthana, S.N.; Gandhe, B.R. Emerging Trends in Advanced High Energy Materials. Combust. Explos. Shock Waves 2007, 43(1): 62-72; DOI: 10.1007/s10573-007-0010-9.
  • [13] Cumming, A.S. New Trends in Advanced High Energy Materials. J. Aerosp. Technol. Manage. 2009, 1: 161-166; DOI: 10.5028/jatm.2009.0102161166.
  • [14] Krause, H.H. New Energetic Materials. In: Energetic Materials. Wiley-VCH, 2004; ISBN 9783527603923.
  • [15] Sims, S.; Fischer, S.; Tagliabue, C. ADN Solid Propellants with High Burning Rates as Booster Material for Hypersonic Applications. Propellants Explos. Pyrotech. 2022, 47(7): e202200028; DOI: 10.1002/prep.202200028.
  • [16] Landsem, E.; Jensen, T.L.; Hansen, F.K.; Unneberg, E.; Kristensen, T.E. Mechanical Properties of Smokeless Composite Rocket Propellants Based on Prilled Ammonium Dinitramide. Propellants Explos. Pyrotech. 2012, 37(6): 691-698.
  • [17] Landsem, E.; Jensen, T.L.; Kristensen, T.E.; Hansen, F.K.; Benneche, T.; Unneberg, E. Isocyanate-Free and Dual Curing of Smokeless Composite Rocket Propellants. Propellants Explos. Pyrotech. 2013, 38(1): 75-86.
  • [18] Chakravarthy, S.R.; Freeman, J.M.; Price, E.W.; Sigman, R.K. Combustion of Propellants with Ammonium Dinitramide. Propellants Explos. Pyrotech. 2004, 29(4): 220-230; DOI: 10.1002/prep.200400053.
  • [19] Fujisato, K.; Habu, H.; Hori, K.; Shibamoto, H.; Yu, X.; Miyake, A.; Vorozhtsov, A.B. Combustion Wave Structure of ADN-based Composite Propellant. Proc. 15th Semin. New Trends Res. Energ. Mater., Pardubice, Czech Republic, 2012, 140-146.
  • [20] Cerii, S.; Bohn, M.A. Ageing Behaviour of Rocket Propellant Formulations with AND as Oxidizer Investigated by DMA, DSC, and SEM. Proc. 42nd Int. Annu. Conf. Fraunhofer ICT, Karlsruhe, Germany, 2011, 10.11-10.18.
  • [21] Wingborg, N.; Andreasson, S.; de Flon, J.; Johnsson, M.; Liljedahl, M.; Oscarsson, C.; Pettersson, A.; Wanhatalo, M. Development of ADN-Based Minimum Smoke Propellants. Proc. 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, American Institute of Aeronautics and Astronautics, 2010
  • [22] de Klerk, W.P.C.; van der Heijden, A.E.D.M.; Veltmans, W.H.M. Thermal Analysis of the High-Energetic Material HNF. J. Therm. Anal. Calorim. 2001, 64(3): 973-985.
  • [23] Athar, J.; Ghosh, M.; Dendage, P.S.; Damse, R.S.; Sikder, A.K. Nanocomposites: An Ideal Coating Material to Reduce the Sensitivity of Hydrazinium Nitroformate (HNF). Propellants Explos. Pyrotech. 2010, 35(2): 153-158.
  • [24] Gadiot, G.M.H.J.L.; Mul, J.M.; Meulenbrugge, J.J.; Korting, P.A.O.G.; Schnorkh, A.J.; Schöyer, H.F.R. New Solid Propellants Based on Energetic Binders and HNF. Acta Astronaut. 1993, 29(10): 771-779.
  • [25] Bohn, M.A. Thermal Stability of Hydrazinium Nitroformate (HNF) Assessed by Heat Generation Rate and Heat Generation and Mass Loss. J. Pyrotech. 2007, 26: 65-94.
  • [26] Dendage, P.S.; Sarwade, D.B.; Asthana, S.N.; Singh, H. Hydrazinium Nitroformate (HNF) and HNF Based Propellants: AReview. J. Energ. Mater. 2001, 19(1): 41-78.
  • [27] Buchalik, K.; Florczak, B.; Lipiński, M. Solid Rocket Propellants ‒ Current State, Development Prospects.(in Polish) Problemy Techniki Uzbrojenia 2001, 30(78): 129-142.
  • [28] Han, X.; Wang, T.; Lin, Z.; Han, D.; Li, S.; Zhao, F.; Zhang, L.; Zhang, L.Y. RDX/AP-CMDB Propellants Containing Fullerenes and Carbon Black Additives. Def. Sci. J. 2009, 59(3): 284-293; DOI: 10.14429/dsj.59.1522.
  • [29] Liu, J.; Ke, X.; Xiao, L.; Hao, G.; Rong, Y.; Jin, C.; Jiang, W.; Li, F. Application and Properties of Nano-sized RDX in CMDB Propellant with Low Solid Content. Propellants Explos. Pyrotech. 2017, 42: 1-8; DOI: 10.1002/prep.201700211.
  • [30] Sutton, G.P.; Biblarz, O. Solid Propellants. In: Rocket Propulsion Elements. 7th Ed., John Wiley & Sons, 2001; ISBN 978-0471326427.
  • [31] Nair, U.R.; Asthana, S.N.; Subhananda Rao, A.; Gandhe, B.R. Advances in High Energy Materials. Def. Sci. J. 2010, 60(2): 137-151; DOI: 10.14429/dsj.60.327.
  • [32] Florczak, B. Investigation of an Aluminized Binder/AP Composite Propellant Containing FOX-7. Cent. Eur. J. Energ. Mater. 2008, 5(3-4): 65-75.
  • [33] Akhavan, J. Introduction to Propellants and Pyrotechnics, 2011; ISBN 978-1-84973-330-4.
  • [34] Haberman, J.; High Performance Liquid Chromatography of Propellants Part I ‒ Analysis of M1, M6, and M10 Propellants. Technical Report ARAED-TR-86017, AD-A168206, 1986.
  • [35] Geene, R.W.; Ward, J.R.; Brosseau, T.L.; Niiler, A.; Birkmire, R.; Rocchio, J.J. Erosivity of a Nitramine Propellant. Technical Report ARBRL-TR-02094, ADA060590, 1978.
  • [36] Chavez, D.E. The Development of Environmentally Sustainable Manufacturing Technologies for Energetic Materials. In: Green Energetic Materials. (Brinck, T., Ed.) John Wiley & Sons, Ltd., 2014; ISBN 9781118676448.
  • [37] Drzyzga, O. Diphenylamine and Derivatives in the Environment: A Review. Chemosphere 2003, 53(8): 809-818; DOI: 10.1016/S0045-6535(03)00613-1.
  • [38] Mendonça-Filho, L.G.; Rodrigues, R.L.B.; Rosato, R.; Galante, E.B.F.; Nichele, J. Combined Evaluation of Nitrocellulose-based Propellants: Toxicity, Performance, and Erosivity. J. Energ. Mater. 2019, 37(3): 293-308; DOI: 10.1080/07370652.2019.1606867.
  • [39] Dejeaifve, A.; Fantin, A.; Monseur, L.; Dobson, R. Making Progress Towards «Green» Propellants. Propellants Explos. Pyrotech. 2018, 43(8): 831-837.
  • [40] Dejeaifve, A.; Sarbach, A.; Roduit, B.; Folly, P.; Dobson, R. Making Progress Towards »Green« Propellants – Part II. Propellants Explos. Pyrotech. 2020, 45(8): 1185-1193; DOI: 10.1002/prep.202000059.
  • [41] Dejeaifve, A.; Berton, V.; Dobson, R. Nitrocellulose Based Propellant Composition Stabilized with a Substituted Phenol Stabilizer. Patent WO 2015/049284, 2015.
  • [42] Dejeaifve, A.; Dobson, R. Ionone Stabilisers for Nitrocellulose-based Propellants. Patent US 10590047B2, 2016.
  • [43] Dejeaifve, A.; Dobson, R. Tocopherol Stabilisers for Nitrocellulose-based Propellants. Patent WO 2016/135228 2016.
  • [44] Wilker, S.; Heeb, G.; Vogelsanger, B.; Petržílek, J.; Skládal, J. Triphenylamine ‒ A‘New’ Stabilizer for Nitrocellulose Based Propellants ‒ Part I: Chemical Stability Studies. Propellants Explos. Pyrotech. 2007, 32(2): 135-148.
  • [45] Cherif, M.F.; Trache, D.; Benaliouche, F.; Chelouche, S.; Tarchoun, A.F.; Kesraoui, M.; Abdelaziz, A. Mordenite Zeolite for Scavenging Nitroxide Radicals and Its Effect on the Thermal Decomposition of Nitrocellulose. J. Energ. Mater. 2021: 1-20.
  • [46] Agrawal, J.P., Status of Explosives. In: High Energy Materials. Wiley VCH, 2010; ISBN 9783527326105.
  • [47] Curtis, N.J.; Kempson, R.M.; Turner, A.R.; White, A. Alternative Stabilisers: Reactivity and Analysis. DSTO Publications 1990.
  • [48] Fryš, O.; Bajerová, P.; Eisner, A.; Skládal, J.; Ventura, K. Utilization of New Nontoxic Substances as Stabilizers for Nitrocellulose-based Propellants. Propellants Explos. Pyrotech. 2011, 36(4): 347-355; DOI: 10.1002/prep.201000043.
  • [49] Anniyappan, M.; Talawar, M.B.; Sinha, R.K.; Murthy, K.P.S. Review on Advanced Energetic Materials for Insensitive Munition Formulations. Combust. Explos. Shock Waves 2020, 56(5): 495-519; DOI: 10.1134/S0010508220050019.
  • [50] Badgujar, D.M.; Talawar, M.B.; Mahulikar, P.P. Review of Promising Insensitive Energetic Materials. Cent. Eur. J. Energ. Mater. 2017, 14(4): 821-843.
  • [51] Rozumov, E., Recent Advances in Gun Propellant Development: From Molecules to Materials, In: Energetic Materials. Springer, 2017; ISBN 978-3-319-59206-0.
  • [52] Müller, D.; Langlotz, W. Propellant and Process for Producing a Propellant. Patent US 8795451, 2014.
  • [53] Müller, D. Insensitive Gun Propellants with Low Temperature Coefficient Based on DNDA. Proc. 43rd Gun & Missile Systems Conf., New Orleans, LA, USA, 2008,
  • [54] Ritter, H.; Baschung, B.; Franco, P. Increase of Gun Performance Using CoLayered Propellants Based on NENA Formulations. Proc. 38th Int. Annu. Conf. ICT, Karlsruhe, Germany, 2007.
  • [55] Xiao, Z.; Ying, S.; Xu, F. Response of TEGDN Propellants to Plasma Ignition with the Same Magnitude of Ignition Energy as Conventional Igniters in an Interrupted Burning Simulator. Propellants Explos. Pyrotech. 2015, 40(4): 484-490.
  • [56] Pesce-Rodriguez, R.A.; Shaw, F.J.; Fifer, R.A. Pyrolysis GC-FTIR Studies of a LOVA Propellant Formulation Series. J. Energ. Mater. 1992, 10(4-5): 221-250.
  • [57] Damse, R.S.; Omprakash, B.; Tope, B.G.; Chakraborthy, T.K.; Singh, A. Study of N-n-Butyl-N-(2-nitroxyethyl)nitramine in RDX Based Gun Propellant. J. Hazard. Mater. 2009, 167(1-3): 1222-1225; DOI: 10.1016/j.jhazmat.2008.12.095.
  • [58] Chakraborthy, T.K.; Raha, K.C.; Omprakash, B.; Singh, A. A Study on Gun Propellants Based on Butyl-NENA. J. Energ. Mater. 2004, 22(1): 41-53.
  • [59] EURENCO ‒ Product Catalogue. https://eurenco.com/wp-content/uploads/ProductCatalogue-EURENCO.pdf [accessed Sept. 2022].
  • [60] Dahlberg, J. GUDN-Propellants and the Uniflex 2 IM Modular Charge System. Proc. Insensitive Munitions & Energetic Materials Technology Symp., Miami, FL, USA, 2007.
  • [61] Cieślak, K. Development of Powders Technology to Aviation Ammunition. (in Polish) Doctoral Thesis, Warsaw University of Technology, Warsaw, Poland, 2014.
  • [62] Zygmunt, A. Propulsion Materials Based on Nitrocellulose. (in Polish) Doctoral Thesis, Warsaw University of Technology, Warsaw, Poland, 2016.
  • [63] Bogusz, R.; Florczak, B.; Gańczyk-Specjalska, K.; Słabik, P.; Bełzowski, J.; Kalbarczyk-Amanowicz, B.; Zając, P. Triple-base Smokeless Powder Mixture. Patent Pending PL, 2020.
  • [64] Hara, M.; Trzciński, W.A. Experimental and Theoretical Investigation of the Heat of Combustion of RDX-based Propellants. Cent. Eur. J. Energ. Mater. 2019, 16(3): 399-411; DOI: 10.22211/cejem/112251.
  • [65] Hara, M.; Trzciński, W.A.; Cudziło, S.; Szala, M.; Chyłek, Z.; Surma, Z. Thermochemical Properties, Ballistic Parameters and Sensitivity of New RDXbased Propellants. Cent. Eur. J. Energ. Mater. 2020, 17(2): 223-238.
  • [66] Hara, M.M. Preparation and Characterization of Propellants with Reduced Sensitivity. (in Polish) Doctoral Thesis, Military University of Technology, Warsaw, Poland, 2020.
  • [67] In 2020, a Total of 2.37% of GDP was Allocated to State Defense Expenditure. (in Polish) http://www.pap.pl/aktualnosci/news%2C781992%2Cmon-w-2020-r-nawydatki-obronne-panstwa-przeznaczono-lacznie-237-proc-pkb [accessed Sept. 2022].
  • [68] Act of March 11, 2022 on the Defense of the Homeland. Act Proposal.(in Polish) http://orka.sejm.gov.pl/opinie9.nsf/nazwa/2052_u/$file/2052_u.pdf [accessed Sept. 2022].
  • [69] Polak, R. The Place and Role of the National Arms Industry in the National Defence System in the Light of the Experiences and Challenges of the Twenty-First Century. (in Polish) Inżynieria Bezpieczeństwa Obiektów Antropogenicznych 2015, 1: 29-36.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c8ddff9c-30a4-4278-ac05-fe9b9562e217
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.