Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we systematically investigate the effect of the five most important ship hull form parameters, namely the longitudinal centre of buoyancy (LCB), the half angle of entrance of the design waterline ((½))αE), and the length (CLPR), cross-section (CABT) and volume (C ΔPR) parameters for the bulbous bow on the ship resistance using a computational fluid dynamics method. The parent ship hull form investigated in this study is a 4600DWT cargo ship, which operates on Vietnam’s river-sea routes. To save time and reduce costs, only 25 test cases designed with the orthogonal array Taguchi method are simulated, and the resistance is calculated in deep and shallow water at speeds of 10.0 and 9.0 knots, respectively. The optimal combination of the five ship hull form parameters is obtained using Taguchi-grey relational analysis. The results indicate that the optimum ship hull form depends on the water depth, and that LCB is the most critical parameter in regard to resistance. Of the combinations studied here, the variant with (½)αE=42°, CLPR=0.0141, CABT=0.1600, C ΔPR=0.00173, LCB=48.654%LBP is found to be optimal.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
17--28
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- Vietnam Maritime University, Hai Phong, Viet Nam
autor
- Ho Chi Minh City University of Technology, Ho Chi Minh City, Viet Nam
- Vietnam Vietnam National University, Ho Chi Minh City, Viet Nam
autor
- Ho Chi Minh City University of Technology, Ho Chi Minh City, Viet Nam
- Vietnam Vietnam National University, Ho Chi Minh City, Viet Nam
autor
- Ho Chi Minh City University of Technology, Ho Chi Minh City, Viet Nam
- Vietnam Vietnam National University, Ho Chi Minh City, Viet Nam
autor
- Vietnam Maritime University, Hai Phong, Viet Nam
Bibliografia
- 1. Kraskowski M. CFD optimisation of the longitudinal volume distribution of a ship’s hull by constrained transformation of the sectional area curve. Polish Maritime Research 2022, vol. 29, no. 3, pp. 11-20. https://doi.org/10.2478/pomr-2022-0022.
- 2. Luu DD et al. Numerical study on the influence of longitudinal position of centre of buoyancy on ship resistance using RANSE method. Naval Engineers Journal 2020, vol. 132, no. 4, pp. 151-160.
- 3. Szelangiewicz T, Abramowski T. Numerical analysis of influence of ship hull form modification on ship resistance and propulsion characteristics. Polish Maritime Research 2009, vol. 16, no. 4, pp. 3-8. https://doi.org/10.2478/v10012-008-0059-8.
- 4. Cepowski T. Determination of optimum hull form for passenger car ferry with regard to its sea-keeping qualities and additional resistance in waves. Polish Maritime Research 2008, vol. 15, no. 2, pp. 3-11. https://doi.org/10.2478/v10012-007-0057-2.
- 5. Karczewski A, Kozak J. A generative approach to hull design for a small watercraft. Polish Maritime Research 2023, vol. 30, no. 1, pp. 4-12. https://doi.org/10.2478/pomr-2023-0001.
- 6. Karczewski A, Kunicka M. Influence of the hull shape on the energy demand of a small inland vessel with hybrid propulsion. Polish Maritime Research 2021, vol. 28, no. 3, pp. 35-43. https://doi.org/10.2478/pomr-2021-0032.
- 7. Le T-H et al. Numerical investigation of length to beam ratio effects on ship resistance using RANSE method. Polish Maritime Research 2023, vol. 30, no. 1, pp. 13-24. https://doi.org/10.2478/pomr-2023-0002.
- 8. Krishnaiah K, Shahabudeen P. Applied design of experiments and Taguchi methods. PHI Learning Pvt. Ltd.; 2012. ISBN: 978-81-203-4527-0.
- 9. Freddi A, Salmon M. Introduction to the Taguchi method, in Design Principles and Methodologies. Springer; 2019. pp. 159-180.
- 10. K’uang J. Ku, S.S.Rao, Li Chen, Taguchi-aided search method for design optimization of engineering system. engineering optimization, 2007, vol. 30, no. 1. https://doi.org/10.1080/03052159808941235.
- 11. Patel NS, Parihar PL, Makwana S. Parametric optimization to improve the machining process by using Taguchi method: A review. Materials Today: Proceedings 2021 vol. 47, pp. 2709-2714. https://doi.org/10.1016/j.matpr.2021.03.005.
- 12. Chen WH et al. Optimization of a vertical axis wind turbine with a deflector under unsteady wind conditions via Taguchi and neural network applications. Energy Conversion Management 2022, vol. 254, pp. 115209. https://doi.org/10.1016/j.enconman.2022.115209.
- 13. Sibel Gunes EM, Senyigit E, Ozceyhan V. A Taguchi approach for optimization of design parameters in a tube with coiled wire inserts. Applied Thermal Engineering 2011, vol. 31, nos. 14-15, pp. 2568-2577. https://doi.org/10.1016/j.applthermaleng.2011.04.022.
- 14. Nadery A, Ghassemi H. Numerical investigation of the hydrodynamic performance of the propeller behind the ship with and without WED. Polish Maritime Research 2020, vol. 27, no. 4, pp. 50-59. https://doi.org/10.2478/pomr-2020-0065.
- 15. Lee SS et al. A study on optimization of ship hull form based on neuro-response surface method (NRSM). Journal of Marine Science 2014, vol. 22, no. 6. p. 12. https://doi.org/10.6119/JMST-014-0321-12.
- 16. Parviz Ghadimi , S.M.S.a.A.G., Numerical study of the effect of angle and location of the first and second steps on the performance of planing hull and their optimization using the Taguchi statistical method. Hindawi Mathematical Problems in Engineering 2023, Article ID 6881630. https://doi.org/10.1155/2023/6881630.
- 17. Petar Georgiev P. Parameter ship hull design based on the Taguchi method. Schiffbauforschung 2002, vol. 41, nos. 3/4, pp. 19-28.
- 18. Szelangiewicz T. Numerical analysis of influence of ship hull form modification on ship resistance and propulsion characteristics. Polish Maritime Research 2010, vol. 17, no. 1, pp. 3-9. https://doi.org/10.2478/v10012-008-0059-8.
- 19. Kołodziej R, Hoffmann P. Numerical estimation of hull hydrodynamic derivatives in ship maneuvering prediction. Polish Maritime Research 2021, vol. 28, no. 2, pp. 46-53. https://doi.org/10.2478/pomr-2021-0020.
- 20. Tu TN et al. Numerical prediction of propeller-hull interaction characteristics using RANS method. Polish Maritime Research 2019, vol. 26, no. 2, pp. 163-172. https://doi.org/10.2478/pomr-2019-0036.
- 21. Thanh‑Phong Dao SCH. Optimization of a two degrees of freedom compliant mechanism using Taguchi method‑based grey relational analysis. Microsystem Technologies 2017, vol. 23, pp. 4815-4830. https://doi.org/10.1007/s00542-017-3292-1.
- 22. Muthuramalingam T, Moham B. Application of Taguchi-grey multi responses optimization on process parameters in electro erosion. Measurement 2014, vol. 58, pp. 495-502. https://doi.org/10.1016/j.measurement.2014.09.029.
- 23. Molland AF, Turnock SR, Hudson DA Ship resistance and propulsion. Cambridge University Press; 2017 https://doi.org/10.1017/9781316494196.
- 24. Mitra A. The Taguchi method. Wiley Interdisciplinary Reviews: Computational Statistics 2011, vol. 3, no. 5, pp. 472-480.
- 25. Hoa NTN et al. Numerical investigating the effect of water depth on ship resistance using RANS CFD method. Polish Maritime Research 2019, vol. 26, no. 3, pp. 56-64. https://doi.org/10.2478/pomr-2019-0046.
- 26. Haq AN, Marimuthu P, Jeyapaul R. Multi response optimization of machining parameters of drilling Al/SiC metal matrix composite using grey relational analysis in the Taguchi method. International Journal of Advanced Manufacturing Technology 2008, vol. 37, pp. 250-255. https://doi.org/10.1007/s00170-007-0981-4.
Uwagi
1. W pdf błędny nr Orcid dla autora Vu Minh Ngoc.
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c8dbceda-7a99-49db-86f5-0da2af68595b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.