PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bayesian approach to tomographic imaging of rock-mass velocity heterogeneities

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Detailed imaging of the Earth subsurface structure has both scientific and practical aspects. From a scientific point of view knowledge of the Earth’s structure is necessary for understanding various processes. Practical aspects include such issues as localization and description of natural resources deposits. Although huge progress has been made in this field, there are still a lot of questions not answered yet. One of them is the question of a relation between observed seismicity and the earth’s structure. In this paper we address this issue and argue that the probabilistic (Bayesian) approach should be used. Since this inversion method introduces some additional complexity to the already difficult seismic tomography technique, we decided to describe the basic steps of Bayesian tomographic imaging from data preparation to analysis of imaging results. The methodological considerations are illustrated by examples of imaging for four mining regions within the Rudna (Poland) copper mine.
Czasopismo
Rocznik
Strony
1395--1436
Opis fizyczny
Bibliogr. 98 poz.
Twórcy
autor
  • Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland
Bibliografia
  • 1. Aki, K., and P.G. Richards (1985),Quantitative Seismology, Freeman and Co., San Francisco.
  • 2. Ampuero, J.-P., J.-P. Vilotte, and F.J. Sanchez-Sesma (2002), Nucleation of rupture under slip dependent friction law: Simple models of fault zone, J. Geophys.Res.107, B12, 2324, DOI: 10.1029/2001JB000452.
  • 3. Backus, G., and J.F. Gilbert (1968), The resolving power of gross Earth data, Geophys. J. R. Astr. Soc.16, 2, 169-205, DOI: 10.1111/j.1365-246X.1968.tb00216.x.
  • 4. Behounkova, M., H. Cizkova, C. Matyska, D.A. Yuen, and M.S. Wang (2007), Resolution tests of three-dimensional convection models by traveltime tomography: effects of Rayleigh number and regular versus irregular parametrization, Geophys. J. Int.170, 1, 401-416, DOI: 10.1111/j.1365-246X.2007.03458.x.
  • 5. Białecki, M., and Z. Czechowski (2013), On one-to-one dependence of rebound parameters on statistics of clusters: exponential and inverse-power distribution out of random domino automaton, J. Phys. Soc. Jpn. 82, 1, 014003-014003-9,DOI: 10.7566/JPSJ.82.014003.
  • 6. Bijwaard, H., W. Spakman, and E. Engdahl (1998), Closing the gap between regional and global travel time tomography, J. Geophys. Res.103, B12, 30055-30078,DOI: 10.1029/98JB02467.
  • 7. Bosch, M. (1999), Lithologic tomography: From plural geophysical data to lithology estimation, J. Geophys. Res.104, B1, 749-766, DOI: 10.1029/1998JB900014.
  • 8. Bosch, M., C. Barnes, and K. Mosegaard (2000), Multi-step samplers for improving efficiency in probabilistic geophysical inference. In: P.C. Hansen, B.H. Jacobsen, and K. Mosegaard (eds.),Methods and Applications of Inversion, Lecture Notes in Earth Sciences, Vol. 92, Springer, Berlin Heidelberg, 50-67, DOI:10.1007/BFb0010283.
  • 9. Boschi, L., G. Ekstrom, and B. Kustowski (2004), Multiple resolution surface wave tomography: the Mediterranean basin, Geophys. J. Int.157, 1, 293-304, DOI:10.1111/j.1365-246X.2004.02194.x.
  • 10. Bossu, R., J. Grasso, L. Plotnikova, B. Nurtaev, J. Frechet, and M. Moisy (1996), Complexity of intracontinental seismic faultings: the Gazli, Uzbekistan, sequence, Bull. Seismol. Soc. Am.86, 4, 959-971.
  • 11. Brandt, S. (1999),Data Analysis. Statistical and Computational Methods for Scientists and Engineers, 3rd ed., Springer, New York.
  • 12. Cardarelli, E., and A. Cerreto (2002), Ray tracing in elliptical anisotropic media us-ing the linear traveltime interpolation (LTI) method applied to traveltime seismic tomography, Geophys. Prospect.50, 1, 55-72, DOI: 10.1046/j.1365-2478.2002.00297.x.
  • 13. Cattaneo, M., P. Augliera, D. Spallarossa, and C. Eva (1997), Reconstruction of seismo-genetic structures by multiplet analysis: an example of Western Liguria, Italy, Bull. Seismol. Soc. Am.87, 4, 971-986.
  • 14. Cerveny, V. (2001),Seismic Ray Theory, Cambridge University Press, New York.
  • 15. Chapman, C. (2004),Fundamentals of Seismic Wave Propagation, Cambridge Univer-sity Press, Cambridge.
  • 16. Cheng, X., F. Niu, P. Silver, and R. Nadeau (2011), Seismic imaging of scatterer migration associated with the 2004 Parkfield earthquake using waveform data of repeating earthquakes and active sources, Bull. Seismol. Soc. Am.101, 3,1291-1301, DOI: 10.1785/0120100261.
  • 17. Cormier, V., and W.-J. Su (1994), Effects of three-dimensional crustal structure on the estimated slip history and ground motion of the Loma Prieta earthquake, Bull. Seismol. Soc. Am.84, 2, 284-294.
  • 18. Curtis, A. (1999), Optimal experiment design: cross-borehole tomographic examples, Geophys. J. Int.136, 3, 637-650, DOI: 10.1046/j.1365-246x.1999.00749.x.
  • 19. Curtis, A., and A. Lomax (2001), Prior information, sampling distributions, and the curse of dimensionality, Geophysics 66, 2, 372-378, DOI: 10.1190/1.1444928.
  • 20. Czechowski, Z., and M. Białecki (2012a), Ito equations out of domino cellular automaton with efficiency parameters, Acta Geophys.60, 3, 846-857, DOI:10.2478/s11600-012-0021-0.
  • 21. Czechowski, Z., and M. Białecki (2012b), Three-level description of the domino cellular automaton, J. Phys. A: Math. Theor.45, 15, 155101, DOI: 10.1088/1751-8113/45/15/155101.
  • 22. Dahlen, F., S. Hung, and G. Nolet (2000), Frechet kernels for finite-frequency travel-times – I. Theory, Geophys. J. Int.141, 1, 157-174, DOI: 10.1046/j.1365-246X.2000.00070.x.
  • 23. Deal, M., and G. Nolet (1996), Comment on “Estimation of resolution and covariance for large matrix inversions” by J. Zhang and G.A. McMechan, Geophys. J.Int.127, 1, 245-250, DOI: 10.1111/j.1365-246X.1996.tb01548.x.
  • 24. Deal, M., and G. Nolet (1999), Slab temperature and thickness from seismic tomography: 2. Izu-Bonin, Japan, and Kuril subduction zones, J. Geophys. Res.104,B12, 28803-28812, DOI: 10.1029/1999JB900254.
  • 25. Dębski, W. (2002), Imaging rock structure using acoustic waves: methods and algorithms. In: Seismogenic Process Monitoring, Balkema, Rotterdam, 309-326.
  • 26. Dębski, W. (2004), Application of Monte Carlo techniques for solving selected seismological inverse problems, Publs. Inst. Geophys. Pol. Acad. Sc.B-34, 367,1-207.
  • 27. Dębski, W. (2008), Estimating the earthquake source time function by Markov Chain Monte Carlo sampling, Pure Appl. Geophys.165, 7, 1263-1287, DOI:10.1007/s00024-008-0357-1.
  • 28. Dębski, W. (2010a), Probabilistic inverse theory, Adv. Geophys.52, 1-102, DOI:10.1016/S0065-2687(10)52001-6.
  • 29. Dębski, W. (2010b), Seismic tomography by Monte Carlo sampling, Pure Appl. Geo-phys.167, 1-2, 131-152, DOI: 10.1007/s00024-009-0006-3.
  • 30. Dębski, W., and B. Domański (2002), An application of the pseudo-spectral technique to retrieving source time function, Acta Geophys. Pol.50, 2, 207-221.
  • 31. Dębski, W., and R. Young (1999), Enhanced velocity tomography: Practical method of combining velocity and attenuation parameters, Geophys. Res. Lett.26, 21,3253-3256, DOI: 10.1029/1998GL010368.
  • 32. Dębski, W., and R. Young (2002), Tomographic imaging of thermally induced fractures in granite using Bayesian inversion, Pure Appl. Geophys.159, 1-3, 277-307,DOI: 10.1007/978-3-0348-8179-1_13.
  • 33. Duijndam, A.J.W. (1988), Bayesian estimation in seismic inversion. Part I: Principles, Geophys. Prospect.36, 8, 878-898, DOI: 10.1111/j.1365-2478.1988.tb02198.x.
  • 34. Eppstein, M.J., and D. Dougherty (1998), Optimal 3-D traveltime tomography,Geo-physics63, 3, 1053-1061, DOI: 10.1190/1.1444383.
  • 35. Fornberg, B. (1996), A Practical Guide to Pseudospectral Methods, Cambridge Mono-graphs on Applied and Computational Mathematics, Cambridge University Press, Cambridge.
  • 36. Friedel, M.J., M.J. Jackson, E.M. Williams, M.S. Olson, and E. Westman (1996),Tomographic imaging of coal pillar conditions: Observations and implications, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.33, 3, 279-290, DOI:10.1016/0148-9062(95)00061-5.
  • 37. Gibowicz, S.J. (1990), Seismicity induced by mining, Adv. Geophys.32, 1-74, DOI:10.1016/S0065-2687(08)60426-4.
  • 38. Gibowicz, S.J. (2001), Radiated energy scaling for seismic events induced by mining, Acta Geophys. Pol.49, 1, 95-111.
  • 39. Gibowicz, S.J. (2009), Seismicity induced by mining: Recent research, Adv. Geo-phys.51, 1-53, DOI: 10.1016/S0065-2687(09)05106-1.
  • 40. Gibowicz, S.J., and A. Kijko (1994), An Introduction to Mining Seismology, Academic Press, San Diego.
  • 41. Gilks, W., S. Richardson, and D. Spiegelhalter (1996), Introducing Markov chain Monte Carlo. In: Markov Chain Monte Carlo in Practice. Chapman & Hall/CRCPress, London.
  • 42. Gillespie, D.T. (1992),Markov Processes. An Introduction for Physical Scientists, Academic Press Inc., San Diego.
  • 43. Guha, S.K. (2000),Induced Earthquakes, Kluwer Acad. Pub., Dordrecht.
  • 44. Hastings, W.K. (1970), Monte Carlo sampling methods using Markov chains and theirapplications,Biometrika57, 1, 97-109, DOI: 10.1093/biomet/57.1.97.
  • 45. Iyer, H.M., and K. Hirahara (1993),Seismic Tomography. Theory and Practice, Chap-man & Hall, London.
  • 46. Jackson, D.D., and M. Matsu’ura (1985), A Bayesian approach to nonlinear inversion, J. Geophys. Res.90, B1, 581-591, DOI: 10.1029/JB090iB01p00581.
  • 47. Jeffreys, H. (1983),Theory of Probability, Clarendon Press, Oxford.
  • 48. Kame, N., J. Rice, and R. Dmowska (2003), Effects of prestress state and rupture velocity on dynamic fault branching, J. Geophys. Res.108, B5, 2265, DOI:10.1029/2002JB002189.
  • 49. Kennett, B., and P. Cummins (2005), The relationship of the seismic source and subduction zone structure for the 2004 December 26 Sumatra–Andaman earthquake, Earth Planet. Sci. Lett.239, 1-2, 1-8, DOI: 10.1016/j.epsl.2005.08.015.
  • 50. Khan, P.K., and P.P. Chakraborty (2009), Bearing of plate geometry and rheology on shallow-focus mega-thrust seismicity with special reference to 26 December 2004 Sumatra event, J. Asian Earth Sci.34, 3, 480-491, DOI:10.1016/j.jseaes.2008.07.006.
  • 51. Kijko, A. (1994), Seismological outliers:L1 or adaptive Lp norm application, Bull. Seismol. Soc. Am.84, 2, 473-477.
  • 52. Kwiatek, G. (2008), Relative source time functions of seismic events at the Rudna copper mine, Poland: estimation of inversion uncertainties, J. Seismol.12, 4,499-517, DOI: 10.1007/s10950-008-9100-8.
  • 53. Latorre, D., J. Virieux, T. Monfret, V. Monteiller, T. Vanorio, J.-L. Got, and H. Lyon-Caen (2004), A new seismic tomography of Aigion area (Gulf of Corinth, Greece) from the 1991 data set, Geophys. J. Int.159, 3, 1013-1031, DOI:10.1111/j.1365-246X.2004.02412.x.
  • 54. Leveque, J.-J., L. Rivera, and G. Wittlinger (1993), On the use of the checker-board test to assess the resolution of tomographics inversions, Geophys. J. Int.115,1, 313-318, DOI: 10.1111/j.1365-246X.1993.tb05605.x.
  • 55. Mai, P.M., and G.C. Beroza (2002), A spatial random field model to characterize complexity in earthquake slip, J. Geophys. Res.107, B11, 2308, DOI:10.1029/2001JB000588.
  • 56. Maxwell, S.C., and R.P. Young (1992), Sequential velocity imaging and microseismic monitoring of mining-induced stress change, Pure Appl. Geophys.139, 3/4,421-447, DOI: 10.1007/BF00879945.
  • 57. Maxwell, S.C., and R.P. Young (1993), A comparison between controlled source and passive source seismic velocity images, Bull. Seismol. Soc. Am.83, 6, 1813-1834.
  • 58. McGarr, A., and D. Simpson (1997), A broad look at induced and triggered seismicity. In:S.J. Gibowicz and S. Lasocki (eds.),Rockbursts and Seismicity in Mines, Balkema, Rotterdam, 385-396.
  • 59. Menke, W. (1989),Geophysical Data Analysis: Discrete Inverse Theory, International Geophysics Series, Vol. 45, Academic Press Inc., San Diego.
  • 60. Metropolis, N., A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller (1953), Equation of state calculations by fast computing machines, J. Chem. Phys.21, 6, 1087-1092, DOI: 10.1063/1.1699114.
  • 61. Michelini, A. (1995), An adaptive-grid formalism for traveltime tomography, Geophys. J. Int.121, 2, 489-510, DOI: 10.1111/j.1365-246X.1995.tb05728.x.
  • 62. Moscoso, E., I. Grevemeyer, E. Contreras-Reyes, E. Flueh, Y. Dzierma, W. Rabbel, and M. Thorwart (2010), Revealing the deep structure and rupture plane of the 2010 Maule, Chile earthquake (Mw = 8.8) using wide angle seismic data, Earth Planet. Sci. Lett.307, 1-2, 147-155, DOI: 10.1016/j.epsl.2011.04.025.
  • 63. Mosegaard, K., and M. Sambridge (2002), Monte Carlo analysis of invers problems, Inverse Probl.18, 3, R29-45, DOI: 10.1088/0266-5611/18/3/201.
  • 64. Mosegaard, K., and A. Tarantola (2002), Probabilistic approach to inverse problems. In: International Handbook of Earthquake & Engineering Seismology, Academic Press, San Diego, 237-265.
  • 65. Nolet, G. (ed.) (1987),Seismic Tomography, D. Reidel Publ. Co., Dordrecht.
  • 66. Nolet, G., and R. Montelli (2005), Optimal parametrization of tomographic models, Geophys. J. Int.161, 2, 365-372, DOI: 10.1111/j.1365-246X.2005.02596.x.
  • 67. Nolet, G., R. Montelli, and J. Virieux (1999), Explicit, approximate expressions for the resolution and a posteriori covariance of massive tomographic systems, Geophys. J. Int.138, 1, 36-44, DOI: 10.1046/j.1365-246x.1999.00858.x.
  • 68. Nolet, G., R. Montelli, and J. Virieux (2001), Replay to comment by Z.S. Yao, R.G. Roberts and A. Tryggvason on ‘Explicit, approximate expressions for the resolution and a posteriori covariance of massive tomographic systems’, Geophys. J. Int.145, 1, 315, DOI: 10.1111/j.1365-246X.2001.00347.x.
  • 69. Okada, T., T. Yaginuma, N. Umino, T. Matsuzawa, A. Hasegawa, H. Zhang, and C. Thurber (2006), Detailed imaging of the fault planes of the 2004 Niigata-Chuetsu, central Japan, earthquake sequence by double-difference tomography, Earth Planet. Sci. Lett.244, 1-2, 32-43, DOI: 10.1016/j.epsl.2006.02.010.
  • 70. Parker, R.L. (1994),Geophysical Inverse Theory, Princeton University Press, Princeton.
  • 71. Pratt, T., J. Dolan, J. Odum, W. Stephenson, R. Williams, and M. Templeton (1998), Multiscale seismic imaging of active fault zones for hazard assessment: a case study of the Santa Monica fault zone, Los Angeles, California, Geophysics 63, 2, 479-489, DOI: 10.1190/1.1444349.
  • 72. Ripperger, J., J.-P. Ampuero, P. Mai, and D. Giardini (2007), Earthquake source characteristics from dynamic rupture with constrained stochastic fault stress, J. Geophys. Res.112, B4, BO4311, DOI: 10.1029/2006JB004515.
  • 73. Robert, C.P., and G. Casella (1999),Monte Carlo Statistical Methods, Springer Texts in Statistics, Springer, New York.
  • 74. Rudziński, Ł., and W. Dębski (2011), Extending the double-difference location technique to mining applications. Part I: Numerical study, Acta Geophys.59, 4,785-814, DOI: 10.2478/s11600-011-0021-5.
  • 75. Sambridge, M., and O. Gudmundsson (1998), Tomographic systems of equations with irregular cells, J. Geophys. Res.103, B1, 773-781, DOI: 10.1029/97JB02602.
  • 76. Sethian, J.A. (1999),Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, New York, 378 pp.
  • 77. Spakman, W., and H. Bijwaard (2001), Optimization of cell parameterizations for tomographic inverse problems, Pure Appl. Geophys.158, 1401-1423, DOI:10.1007/978-3-0348-8264-4_5.
  • 78. Tadokoro, K., M. Ando, S. Baris, K. Nishigami, M. Nakamura, S. Ucer, A. Ito,Y. Honkura, and A. Isikara (2002), Monitoring of fault healing after the1999 Kocaeli, Turkey, earthquake, J. Seismol.6, 3, 411-417, DOI: 10.1023/A:1020091610510.
  • 79. Tarantola, A. (1987),Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation, Elsevier, Amsterdam.
  • 80. Tarantola, A. (2005),Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM, Philadelphia.
  • 81. Tarantola, A., and B. Valette (1982), Inverse problems = quest for information, J. Geophys.50, 3, 159-170.
  • 82. Tierney, L. (1994), Markov chains for exploring posterior distributions (with discussion),Ann. Statist.22, 4, 1701-1762, DOI: 10.1214/aos/1176325750.
  • 83. Tromp, J., C. Tape, and Q. Liu (2005), Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels, Geophys. J. Int.160, 1, 195-216, DOI:10.1111/j.1365-246X.2004.02453.x.
  • 84. Van Avendonk, H.J.A., A.J. Harding, J.A. Orcutt, and J.S. McClain (1998), A two-dimensional tomographic study of the Clipperton transform fault, J. Geophys.Res.103, B8, 17885-17899, DOI: 10.1029/98JB00904.
  • 85. Vesnaver, A.L. (1996), Irregular grids in seismic tomography and minimum-time ray tracing, Geophys. J. Int.126, 1, 147-165, DOI: 10.1111/j.1365-246X.1996.tb05274.x.
  • 86. Wang, Z., and D. Zhao (2006), Seismic images of the source area of the 2004 Mid-Niigata prefecture earthquake in Northeast Japan, Earth Planet. Sci. Lett.244,1-2, 16-31, DOI: 10.1016/j.epsl.2006.02.015.
  • 87. Wiejacz, P., and W. Dębski (2001), New observation of Gulf of Gdansk seismic events, Phys. Earth Planet. In.123, 2-4, 233-245, DOI: 10.1016/S0031-9201(00)00212-0.
  • 88. Yamamoto, Y., R. Hino, M. Nishino, T. Yamada, T. Kanazawa, T. Hashimoto, and G. Aoki (2006), Three-dimensional seismic velocity structure around the focal area of the 1978 Miyagi-Oki earthquake, Geophys. Res. Lett.33, 10, L10308,DOI: 10.1029/2005GL025619.
  • 89. Yao, Z.S., R.G. Roberts, and A. Tryggvason (1999), Calculating resolution and covariance matrices for seismic tomography with the LSQR method, Geophys. J.Int.138, 3, 886-894, DOI: 10.1046/j.1365-246x.1999.00925.x.
  • 90. Yao, Z.S., R.G. Roberts, and A. Tryggvason (2001), Comment on ‘Explicit, approximate expressions for the resolution and a posteriori covariance of massive tomographic systems’ by G. Nolet, R. Montelli and J. Virieux, Geophys. J.Int.145, 1, 307-314, DOI: 10.1111/j.1365-246X.2001.00346.x.
  • 91. Zhang, H., and C. Thurber (2005), Adaptive mesh seismic tomography based on tetrahedral and Voronoi diagrams: application to Parkfield, California, J. Geophys.Res.110, B4, B04303, DOI: 10.1029/2004JB003186.
  • 92. Zhang, J., and G. McMechan (1995), Estimation of resolution and covariance for large matrix inversions, Geophys. J. Int.121, 2, 409-426, DOI: 10.1111/j.1365-246X.1995.tb05722.x.
  • 93. Zhang, J., and G. McMechan (1996), Replay to comment by M.M. Deal and G. Nolet on ‘Estimation of resolution and covariance for large matrix inversions’, Geophys.J. Int.127, 1, 251-252, DOI: 10.1111/j.1365-246X.1996.tb01549.x.
  • 94. Zhao, D. (2001), New advances of seismic tomography and its applications to subduction zones and earthquake fault zones: A review, Island Arc10, 1, 68-84, DOI:10.1046/j.1440-1738.2001.00291.x.
  • 95. Zhao, D., H. Kanamori, H. Negishi, and D. Wiens (1996), Tomography of the source area of the 1995 Kobe earthquake: evidence for fluids at the hypocenter? Science 274, 5294, 1891-1894, DOI: 10.1126/science.274.5294.1891.
  • 96. Zhao, D., O. Mishra, and R. Sanda (2002), Influence of fluids and magma on earth-quakes: seismological evidence, Phys. Earth Planet. In.132, 4, 249-267, DOI:10.1016/S0031-9201(02)00082-1.
  • 97. Zhao, H. (2005), A fast sweeping method for Eikonal equations, Math. Comp.74,603-627, DOI: 10.1090/S0025-5718-04-01678-3.
  • 98. Zollo, A., L. D’Auria, R. De Matteis, A. Herrero, J. Virieux, and P. Gasparini (2002), Bayesian estimation of 2-D P-velocity models from active seismic arrival time data: imaging of the shallow structure of Mt Vesuvius (Southern Italy), Geo-phys. J. Int.151, 2, 566-582, DOI: 10.1046/j.1365-246X.2002.01795.x.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c8db1472-e494-481c-891d-9ae66f675049
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.