PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative study on physicochemical properties of alpha-TCP / calcium sulphate dihydrate biomicroconcretes containing chitosan, sodium alginate or methylcellulose

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recently, the attention has been drawn to complex systems – biomicroconcretes composed of a bone cement matrix and resorbable granules or microspheres. This paper presents novel bone substitutes composed of α-tricalcium phosphate (α-TCP; cement matrix), calcium sulphate dihydrate granules (GCSD; aggregates in biomicroconcrete) and various polymers (chitosan, sodium alginate, methylcellulose) used for the improvement of material properties. The aim of this work was to study α-TCP-GCSD-polymer interactions and to compare the impact of organic additives on the physicochemical properties of biomicroconcretes. Methods: Scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP), X-ray diffractometry (XRD) as well as universal testing machine (INSTRON), Gilmore apparatus and pH/ conduct-meter were used. Results: The chemical bonding between α-TCP matrix and CSD granules resulted in a compressive strength appropriate for low-load bearing applications (7–12 MPa) and clinically relevant setting times (8–33 min). Biomicroconcretes consisting of sodium alginate possessed the highest mechanical strength (12 ± 2 MPa). It has also been found that the dissolution-precipitation reactions of the α-TCP were retarded with the addition of chitosan and acetic acid. This effect was not observed in the case of methylcellulose and sodium alginate. Chemical stability and bioactivity of materials were demonstrated during in vitro studies in simulated body fluid. Conclusions: Materials containing calcium sulphate-based granules were surgically handy, possessed promising physicochemical properties and are supposed to ensure desired macroporosity as well as gradual resorption in vivo. It has been demonstrated that the presence of CSD granules and polymers influenced the physicochemical properties of composites.
Rocznik
Strony
47--56
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
  • Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow, Poland
autor
  • Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow, Poland
  • Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow, Poland
Bibliografia
  • [1] ASTM C266-18, Standard test method for time setting of hydraulic-cement paste by gillmore needles, ASTM Annual Book of Standards, American Society for Testing and Materials, West Conshohocken, PA, 04.01, 19428–2959.
  • [2] BOEHM A., MEININGER S., TESCH A., GBURECK U., MÜLLER F., The Mechanical Properties of Biocompatible Apatite Bone Cement Reinforced with Chemically Activated Carbon Fibers, Materials, 2018, 11 (2), 192.
  • [3] BOHNER M., Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements, Injury, 2000, 31, D37-D47.
  • [4] CZECHOWSKA J., ZIMA A., PASZKIEWICZ Z., LIS J., ŚLÓSARCZYK A., Physicochemical properties and biomimetic behaviour of α-TCP-chitosan based materials, Ceram. Int., 2014, 40 (4), 5523–5532.
  • [5] CZECHOWSKA J., ZIMA A., SIEK D., ŚLÓSARCZYK A., The importance of chitosan and nano-TiHA in cement-type composites on the basis of calcium sulfate, Ceram. Int., 2016, 42 (14), 15559–15567.
  • [6] CZECHOWSKA J., ZIMA A., SIEK D., ŚLÓSARCZYK A., Influence of sodium alginate and methylcellulose on hydrolysis and physicochemical properties of α-TCP-based materials, Ceram. Int., 2018, 44(6), 6533–6540.
  • [7] DEMIR Ö., EGE D., Rheological and Mechanical Properties of Thermoresponsive Methylcellulose/Calcium Phosphate-Based Injectable Bone Substitutes, Materials, 2018, 11 (4), 604.
  • [8] FERRANDO A., PART J., BAEZA J., Treatment of cavitary bone defects in chronic osteomyelitis: bioactive glass S53P4 vs. calcium sulphate antibiotic beads, J. Bone Jt. Infect., 2017, 2 (4), 194–201.
  • [9] GINEBRA M.P., FERNÁNDEZ E., DRIESSENS F., PLANELL J.A., Modeling of the Hydrolysis of α-Tricalcium Phosphate, J. Am. Ceram. Soc., 1999, 82(10), 2808–2812.
  • [10] HABRAKEN W.J., WOLKE J.G., MIKOS A.G., JANSEN J.A., Porcine gelatin microsphere/calcium phosphate cement composites: an in vitro degradation study, J. Biomed. Mater. Res. B, 2009, 91 (2), 555–561.
  • [11] HU M., HE Z., HAN F., SHI C., ZHOU P., LING F., ZHU X., YANG H., LI B., Reinforcement of calcium phosphate cement using alkaline-treated silk fibroin, Int. J. Nanomed, 2018, 13, 7183.
  • [12] JULIEN M., KHAIROUN I., LEGEROS R.Z., DELPLACE S., PILET P., WEISS P., DACULSI G., BOULER J.M., GUICHEUX J., Physico- -chemical-mechanical and in vitro biological properties of calcium phosphate cements with doped amorphous calcium phosphates, Biomaterials, 2007, 28 (6), 956–965.
  • [13] KASIOPTAS A., SANDELL V., LIDÉN E., BÖRJESSON O., NILSSON M., Characterization and monitoring of the evolution of a calcium phosphate/calcium sulfate self-setting bone cement, Key Eng. Mater., 2012, 153–158.
  • [14] KOKUBO T., TAKADAMA H., How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials, 2006, 27 (15), 2907–2915.
  • [15] KOLMAS J., KAFLAK A., ZIMA A., ŚLÓSARCZYK A., Alphatricalcium phosphate synthesized by two different routes: Structural and spectroscopic characterization, Ceram. Int., 2015, 41 (4), 5727–5733.
  • [16] LIU S.T., NANCOLLAS G.H, The crystal growth of calcium sulfate dihydrate in the presence of additives, ‎J. Colloid Interface Sci., 1973, 44 (3), 422–429.
  • [17] MEDVECKY L., STULAJTEROVA R., GIRETOVA M., FABEROVA M., Properties of Powder Composite Polyhydroxybutyrate-Chitosan--Calcium Phosphate System, Powder Metall. Prog., 2017, 17 (1), 1–9.
  • [18] OLKOWSKI R., KASZCZEWSKI P., CZECHOWSKA J., SIEK D., PIJOCHA D., ZIMA A., ŚLÓSARCZYK A., LEWANDOWSKA- -SZUMIEŁ M., Cytocompatibility of the selected calcium phosphate based bone cements: comparative study in human cell culture, J. Mater. Sci.: Mater. Med., 2015, 26 (12), 270.
  • [19] PACHON-RODRIGUEZ E.A., COLOMBANI J., Pure dissolution kinetics of anhydrite and gypsum in inhibiting aqueous salt solutions, AIChE. J., 2013, 59 (5), 1622–1626.
  • [20] SARDA S., FERNANDEZ E., NILSSON M., BALCELLS M., PLANELL J.A., Kinetic study of citric acid influence on calcium phosphate bone cements as water-reducing agent, J. Biomed. Mater. Res., 2002, 61 (4), 653–659.
  • [21] SHAHREZAEI M., SHAHROUZI J., HESARAKI S., ZAMANIAN A., The Effect of α-TCP Particle Size on Mechanical and Setting Properties of Calcium Phosphate Bone Cements, J. Arch. Mil. 2014, 2 (2), 16516.
  • [22] SIEK D., ŚLÓSARCZYK A., PRZEKORA A., BELCARZ A., ZIMA A., GINALSKA G., CZECHOWSKA J., Evaluation of antibacterial activity and cytocompatibility of α-TCP based bone cements with silver-doped hydroxyapatite and CaCO3, Ceram. Int., 2017, 43 (16), 13997–14007.
  • [23] TENHUISEN K.S., BROWN P.W., The effects of citric and acetic acids on the formation of calcium-deficient hydroxyapatite at 38 C, J. Mater Sci.: Mater Med., 1994, 5 (5), 291–298.
  • [24] THEISS F., APELT D., BRAND B., KUTTER A., ZLINSZKY K., BOHNER M., MATTER S., FREI C., AUER J.A., VON RECHENBERG B., Biocompatibility and resorption of a brushite calcium phosphate cement, Biomaterials, 2005, 26 (21), 4383–4394.
  • [25] TOYAMA T., KAMEDA S., NISHIMIYA N., Synthesis of Sulfateion-substituted Hydroxyapatite from Amorphous Calcium Phosphate, Bioceram. Dev. Appl., 2013, S1: 011, DOI: 10.4172/2090-5025.S1-011.
  • [26] TSUCHIYA A., SATO M., TAKAHASHI I., ISHIKAWA K., Fabrication of apatite-coated gypsum granules and histological evaluation using rabbits, Ceram. Int., 2018, 44(16), 20330– 20336.
  • [27] XU H.H., SIMON Jr C.G., Fast setting calcium phosphatechitosan scaffold: mechanical properties and biocompatibility, Biomaterials, 2005, 26(12), 1337–1348.
  • [28] ZHANG J., LIU W., SCHNITZLER V., TANCRET F., BOULER J.M., Calcium phosphate cements for bone substitution: chemistry, handling and mechanical properties, Acta Biomater., 2014, 10 (3), 1035–1049.
  • [29] ZIMA A., CZECHOWSKA J., SIEK D., OLKOWSKI R., NOGA M., LEWANDOWSKA-SZUMIEŁ M., ŚLÓSARCZYK A., How calcite and modified hydroxyapatite influence physicochemical properties and cytocompatibility of alpha-TCP based bone cements, J. Mater. Sci.: Mater. Med., 2017, 28 (8), 117.
  • [30] ZIMA A., CZECHOWSKA J., SIEK D., ŚLÓSARCZYK A., Influence of magnesium and silver ions on rheological properties of hydroxyapatite/chitosan/calcium sulphate based bone cements, Ceram. Int., 2017, 43 (18), 16196–16203.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c8ccb8ac-6560-4310-bc25-6c6cc49612a4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.