PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Rotation on the Piezoelectric Wave Impedance Characteristics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The dependence of piezoelectric wave impedance on the rotation speed is investigated theoretically and numerically. The Coriolis force due to rotation is introduced into the piezoelectric motion equations, which is solved by the harmonic plane wave solution. It is shown that the wave impedance variations of longitudinal and transverse waves due to rotation are clearly different. The longitudinal wave impedance continuously increases with a small rotation ratio and one transverse wave impedance is almost irrespective of a rotation ratio. In contrast, the rotation applies a big impact on the other transversal wave impedances in the piezoelectric crystal which decreases monotonically with the rotation speed. Such characteristics are significant in piezoelectric transducers and sensors.
Rocznik
Strony
231--234
Opis fizyczny
Bibliogr. 15 poz., tab., wykr.
Twórcy
  • School of Transportation and Civil Engineering, Nantong University Nantong, China
autor
  • School of Transportation and Civil Engineering, Nantong University Nantong, China
autor
  • School of Transportation and Civil Engineering, Nantong University Nantong, China
Bibliografia
  • 1. Dong S., Bai F., Li J.-F., Viehland D. (2003), A piezoelectric-sound-resonance cavity for hydrogen gas detection, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 50(9): 1105-1113, doi: 10.1109/tuffc.2003.1235322.
  • 2. James B. (1975), Acoustic fields and waves in solids, volumes I and II: B.A. Auld. Published by J. Wiley and Sons, Ltd. 1973, Book review, Applied Acoustics, 8(1): 72-73, doi: 10.1016/0003-682X(75)90008-0.
  • 3. Ledbetter H., Ogi H., Nakamura N. (2004), Elastic, anelastic, piezoelectric coefficients of monocrystal lithium niobate, Mechanics of Materials, 36(10): 941-947, doi: 10.1016/j.mechmat.2003.08.013.
  • 4. Lynnworth L.C. (1965), Ultrasonic impedance matching from solids to gases, IEEE Transactions on Sonics and Ultrasonics, 12(2): 37-48, doi: 10.1109/t-su.1965.29359.
  • 5. Suchkov S.G., Nikolaevtsev V.A., Nikitov V. (2011), The influence of rotation on a phase deviation in surface acoustic wave devices, Journal of Communications Technology and Electronics, 56: 1017, doi: 10.1134/S1064226911080110.
  • 6. Surappa S., Tao M., Levent Degertekin F. (2018), Analysis and design of capacitive parametric ultrasonic transducers for efficient ultrasonic power transfer based on a 1-D lumped model, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 65(11): 2103-2112, doi: 10.1109/tuffc.2018.2866058.
  • 7. Takahashi S., Ohigashi H. (2009), Ultrasonic imaging using air-coupled P(VDF/TrFE) transducers at 2 MHz, Ultrasonics, 49(4): 495-498, doi: 10.1016/j.ultras.2008.10.020.
  • 8. Wang B., Sun L., Schneider-Ramelow M., Lang K.-D., Ngo H.-D. (2021), Recent advances and challenges of nanomaterials-based hydrogen sensors, Micromachines, 12(11): 1429, doi: 10.3390/mi12111429.
  • 9. Yuan X. (2016), Effects of rotation and initial stresses on pyroelectric waves, Archive of Applied Mechanics, 86(3): 433-444, doi: 10.1007/s00419-015-1038-z.
  • 10. Yuan X. (2019), Electric bias dependence of piezoelectric wave reflection upon a rotating half-plane, ZAMM – Journal of Applied Mathematics and Mechanics, 99(10): e201900021, doi: 10.1002/zamm.201900021.
  • 11. Yuan X., Jiang Q. (2017), Reflection of plane waves from rotating pyroelectric half-space under initial stresses, ZAMM – Journal of Applied Mathematics and Mechanics, 97(3): 365-374, doi: 10.1002/zamm.201500223.
  • 12. Yuan X., Jiang Q., Yang F., (2016), Wave reflection and transmission in rotating and stressed pyroelectric half-planes, Applied Mathematics and Computation, 289: 281-297, doi: 10.1016/j.amc.2016.05.016.
  • 13. Yuan X., Li L. (2015a), Wave reflection and refraction in rotating and initially-stressed piezoelectric crystals, Acta Mechanica, 226(10): 3243-3261, doi: 10.1007/s00707-015-1377-4.
  • 14. Yuan X., Li L. (2015b), Waves in a rotating pyroelectric body, Journal of Thermal Stresses 38(4): 399-414, doi: 10.1080/01495739.2015.1015838.
  • 15. Yuan X., Shi Q., Cao Y. (2020), Constant electric bias dependence of wave propagation in a rotating piezoelectric crystal, Acta Mechanica, 231(3): 1209-1215, doi: 10.1007/s00707-019-02596-4.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023). (PL).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c8c7ee95-bb4b-44c1-bacd-ad13d6f49c95
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.