PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of possible use of the ionization signal for the combustion process diagnostics in a spark-ignition combustion engine powered by natural gas

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ocena możliwości wykorzystania sygnału jonizacji do diagnostyki procesu spalania w silniku spalinowym o zapłonie iskrowym zasilanym gazem ziemnym
Języki publikacji
EN
Abstrakty
EN
The ionization signal, which is a result the presence of ions and electrons in the cylinder space of the internal combustion engine, is affected by many factors, including: temperature, pressure, fuel mixture composition, fuel type, presence of exhaust gases and others. The shape of the signal changes to a large extent from cycle to cycle, which indicates the stochastics of the combustion process. Nevertheless, its analysis provides a lot of useful information, such as the location of the maximum pressure or the maximum heat release rate. Using these signals allows supplementing the limited engine control systems of the combustion process in internal combustion engines. The paper presents a comparative analysis of the gas ionization current signal in the cylinder and the variable pressure at fixed operating points of a single-cylinder, four-stroke engine powered by natural gas. The analysis allowed to determine the relationship between the positions of the maximum thermal ionization signal value and of the maximum combustion pressure value. Additionally the relationship between the position of the maximum thermal fraction derivative and the maximum heat release rate was established.
PL
Sygnał jonizacji wynikający z obecności jonów oraz elektronów w przestrzeni cylindra silnika spalinowego jest składową wielu czynników, między innymi: temperatury, ciśnienia, składu mieszanki, rodzaju paliwa, obecności reszty spalin oraz innych. Kształt sygnału zmienia się w znacznym stopniu z cyklu na cykl, co świadczy o stochastyce procesu spalania. Mimo tego, jego analiza dostarcza wielu przydatnych informacji, takich jak położenie maksymalnego ciśnienia czy maksymalnej szybkości wywiązywania się ciepła. Ich wykorzystanie pozwala uzupełnić ograniczone systemy kontroli procesu spalania w silnikach spalinowych. W artykule przedstawiono analizę porównawczą sygnału prądu jonizacji gazów w cylindrze oraz ciśnienia szybkozmiennego przy ustalonych punktach pracy jednocylindrowego, czterosuwowego silnika zasilanego gazem ziemnym. W wyniku analizy uzyskano zależność położenia maksymalnej wartości sygnału jonizacji termicznej od położenia maksymalnej wartości ciśnienia spalania, uzależniono również położenie maksimum pochodnej członu termicznego od położenia maksimum szybkości wywiązywania się ciepła.
Rocznik
Strony
630--637
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
  • Institute of Combustion Engines and Transport Poznan University of Technology Piotrowo 3, 60-965 Poznan, Poland
autor
  • Institute of Combustion Engines and Transport Poznan University of Technology Piotrowo 3, 60-965 Poznan, Poland
Bibliografia
  • 1. Butt R H, Chen Y, Mack J H, Saxena S, Dibble R W, Chen J Y. Improving ion current of sparkplug ion sensors in HCCI combustion using sodium, potassium, and cesium acetates: Experimental and numerical modeling. Proceedings of the Combustion Institute 2014; 35(3), doi:10.1016/j.proci.2014.06.084.
  • 2. Byttner S, Holmberg U. Closed-loop control of EGR using ion currents. Proceedings of the 27th IASTED International Conference Modelling, Identification and Control 2008; 978-0-88986-711-6.
  • 3. Daniels C F. Mass fraction burned and pressure estimation through spark plug ion sensing. Patent US 6089077 A (2000).
  • 4. Dev S, Sandhu N S, Ives M, Yu S, Zheng M. Ion current measurement of diluted combustion using a multi-electrode spark plug. SAE Technical Paper 2018; 2018-01-1134, doi:10.4271/2018-01-1134.
  • 5. Dong G, Chen Y, Wu Z, Li L, Dibble R. Study on the phase relation between ion current signal and combustion phase in an HCCI combustion engine. Proceedings of the Combustion Institute 2015; 35 (3): 3097–3105, https://doi.org/10.1016/ j.proci.2014.08.033.
  • 6. Eriksson L. Methods for ionization current interpretation to be used in ignition control. Diploma Thesis 1995.
  • 7. Fiedkiewicz Ł, Pielecha I, Wisłocki K. Use of the gas ionization signal for combustion process diagnostics in the cylinder of a spark ignition engine. Combustion Engines 2017; 171 (4): 196-200, doi: 10.19206/CE-2017-433.
  • 8. Filipek P, Wendeker M, Kamiński T, Mitraszewska I, Nowacki G. Opinion of ionization signal to estimating composition of mixture in combustion process about engine SI. Journal of KONES Powertrain and Transport 2008; 15 (3): 121–127.
  • 9. Gao Z, Wu X, Man C, Meng X, Huang Z. The relationship between ion current and temperature at the electrode gap. Applied Thermal Engineering 2012; 33–34: 15–23, https://doi.org/10.1016/j.applthermaleng.2011.07.014.
  • 10. Hellring M, Holmberg U. An ion current based peak-finding algorithm for pressure peak position estimation. SAE Technical Paper 2000; 2000-01-2829, https://doi.org/10.4271/2000-01-2829.
  • 11. Hung D, Zhu G, Danne N, McKoskey J. Knock detection for a large displacement air-cooled V-twin motorcycle engine using in-cylinder ionization signals. SAE Technical Paper 2008; 2008-32-0028, https://doi.org/10.4271/2008-32-0028.
  • 12. Koszałka G. Model of operational changes in the combustion chamber tightness of a diesel engine. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2014; 16 (1): 133–139.
  • 13. Kruczyński S, Ślęzak M, Gis W, Orliński P. Evaluation of the impact of combustion hydrogen addition on operating properties of self-ignition engine. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2016; 18 (3): 343–347, http://dx.doi.org/10.17531/ein.2016.3.4.
  • 14. Kusuhara T, Shinkai T, Yoshida K, Langley D. Development on internal EGR feedback control based on ion current. SAE Technical Paper 2017; 2017-01-0793, doi:10.4271/2017-01-0793.
  • 15. Lagana A A M, Lima L L, Justo J F, Arruda B A, Santos M M. Identification of combustion and detonation in spark ignition engines using ion current signal. Fuel 2018; 227: 469–477, doi: 10.1016/j.fuel.2018.04.080.
  • 16. Mikulski M, Wierzbicki S, Piętak A. Zero-dimensional 2-phase combustion model in a dual-fuel compression ignition engine fed with gaseous fuel and a divided diesel fuel charge. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2015; 17 (1): 42–48.
  • 17. Phan T, Mack J H, Butt R H, Dibble R. A comparison of three ion sensing circuits in a homogeneous charge compression ignition engine. Combustion Science and Technology 2017; 189 (8), https://doi.org/10.1080/00102202.2017.1294587.
  • 18. Pielecha I, Pielecha J, Skowron M, Mazanek A. The influence of diesel oil improvers on indices of atomisation and combustion in highefficiency engines. Polish Maritime Research 2017; 24 (3): 99–105, http://doi.org/10.1515/pomr-2017-0094.
  • 19. Pielecha I, Skowron M, Mazanek A. Evaluation of the injectors operational wear process based on optical fuel spray analysis. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2018; 20 (1): 83–89, http://dx.doi.org/10.17531/ein.2018.1.11.
  • 20. Pielecha I, Wisłocki K, Cieślik W, Bueschke W, Skowron M, Fiedkiewicz Ł. Application of IMEP and MBF50 indexes for controlling combustion in dual-fuel reciprocating engine. Applied Thermal Engineering 2018; 132: 188–195, http://dx.doi.org/10.1016/j.applthermaleng.2017.12.089.
  • 21. Piernikarski D, Hunicz J, Komsta H. Detection of knocking combustion in a spark ignition engine using optical signal from the combustion chamber. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2013; 15 (3): 214–220.
  • 22. Rao R, Honnery D. A simplified mechanism for the prediction of the ion current during methane oxidation in engine-like conditions. Combustion and Flame 2015; 162 (7): 2928–2936, https://doi.org/10.1016/j.combustflame.2015.03.011.
  • 23. Rivara N, Dickinson P B, Shenton A T. A transient virtual-AFR sensor using the in-cylinder ion current signal. Mechanical Systems and Signal Processing 2009; 23 (5): 1672–1682, https://doi.org/10.1016/j.ymssp.2009.01.004.
  • 24. Wendeker M. Sterowanie wtryskiem w silniku samochodowym. Lublin: Lubelskie Towarzystwo Naukowe, 1999.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c8c4f2ce-1e4f-4843-9695-051c68d1d2d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.