PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorption of lanthanum(III) and yttrium(III) on kaolinite: kinetics and adsorption isotherms

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Experimental investigations were carried out using kaolinite to adsorb two rare earth ions, lanthanum ion (La3+) and yttrium ion (Y3+), which will provide some useful information and new insights on the mineralization process and fractionation phenomenon of weathered crust elution-deposited rare earth ores. The results showed that the equilibrium adsorption capacity of Y3+ is greater than La3+ under the same experimental conditions. The adsorption of rare earth ions presents strongly temperature dependent indicating an endothermic adsorption process. The pseudo-first-order kinetic model and the pseudo-second-order kinetic model were applied to discuss the adsorption kinetics. It was found that the adsorption rate of rare earth follows the pseudo-second-order kinetic model among the adsorption temperature range. Furthermore, the adsorption process of rare earth ions on kaolinite followed the Langmuir isotherm model confirmed by the correlation of experimental equilibrium data to standard isotherm model, Langmuir and Freundlich isotherms. The activation energies for the adsorption of La3+ and Y3+ on kaolinite are 28.1903 kJ/mol and 25.4190 kJ/mol, respectively. All kaolinite before and after adsorption were characterized by XRD and SEM-EDX to understand the adsorption mechanism. The obtained results suggested that the adsorption of La3+ and Y3+ on kaolinite is an endothermic and chemisorption process.
Słowa kluczowe
Rocznik
Strony
928--939
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wz.
Twórcy
autor
  • Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China
autor
  • Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China
autor
  • Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China
autor
  • Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China
autor
  • Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China
autor
  • Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China
autor
  • Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China
Bibliografia
  • AL-GHOUTI, M., M. KHRAISHEH, A. M., AHMAD, M. N. M., ALLEN, S., 2005. Thermodynamic behaviour and the effect of temperature on the removal of dyes from aqueous solution using modified diatomite: a kinetic study. J. Colloid Interf. Sci. 287(1), 6-13.
  • ALSHAMERI, A., HE, H., ZHU, J., XI, Y., ZHU, R., MA, L., TAO, Q., 2018. Adsorption of ammonium by different natural clay minerals: Characterization, kinetics and adsorption isotherms. Appl. Clay Sci.159, 83-93.
  • BHATTACHARYA, A. K., VENKOBACHAR, C., 1984. Removal of cadmium (II) by low cost adsorbents. J. Environ Eng. 110(1), 110-122.
  • BAO, Z. W., ZHAO, Z. H., 2008. Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China. Ore Geol. Rev. 33(3-4), 519-535.
  • BAI, F., YE, G., CHEN, G., WEI, J., WANG, J., CHEN, J., 2013. Highly selective recovery of palladium by a new silica-based adsorbent functionalized with macrocyclic ligand. Sep. Purif. Technol., 106, 38-46.
  • COPPIN, F., BERGER, G., BAUER, A., CASTET, S., LOUBET, M., 2002. Sorption of Lanthanides on Smectite and Kaolinite. Chem. Geol. 182, 57-68.
  • CHI, R. A., TIAN, J., 2008. Weathered Crust Elution-deposited Rare Earth Ores. New York: Nova Science Pub Inc., New York, USA.
  • DOGAN, M., KARAOGLU, M. H., ALKAN, M., 2009. Adsorption kinetics of maxilon yellow 4GL and maxilon red GRL dyes on kaolinite. J. Hazard Mater. 165(1-3), 1142-1151.
  • FENG, J., ZHOU, F., CHI, R.A., LIU, X., XU, Y. L., LIU, Q., 2018. Effect of a novel compound on leaching process of weathered crust elution-deposited rare earth ore. Miner. Eng. 129, 63-70.
  • GHOSH, D., BHATTACHARYYA, K. G., 2002. Adsorption of methylene blue on kaolinite. Appl. Clay Sci. 20(6), 295-300.
  • HE, Z. Y., ZHANG, Z. Y., YU, J. X., XU, Z. G.,CHI, R. A., 2016a. Process optimization of rare earth and aluminum leaching from weathered crust elution-deposited rare earth ore with compound ammonium salts. J. Rare Earth, 34(4), 413-419.
  • HE, Z. Y., ZHANG, Z. Y., YU, J. X., ZHOU, F., XU, Y. L., XU, Z. G., CHEN, Z., CHI, R. A., 2016b. Kinetics of column leaching of rare earth and aluminum from weathered crust elution-deposited rare earth ore with ammonium salt solutions. Hydrometallurgy, 163, 33-39.
  • JANG, H. M., YOO, S., CHOI, Y. K., PARK, S., KAN, E., 2018. Adsorption isotherm, kinetic modeling and mechanism of tetracycline on Pinus taeda-derived activated biochar. Bioresource technol. 259, 24-31.
  • LAN, X., GAO, J., LI, Y., GUO, Z., 2019. A Green Method of Respectively Recovering Rare Earths (Ce, La, Pr, Nd) from Rare-Earth Tailings under Super-Gravity. J. Hazard Mater. 367, 473-481.
  • MOLDOVEANU, G. A., PAPANGELAKI, V. G., 2016. An overview of rare-earth recovery by ion-exchange leaching from ion-adsorption clays of various origins. Mineral Mag. 80(1), 63-76.
  • MA, L., DANG, D. H., WANG, W., EVANS, R. D., WANG, W. X., 2019. Rare earth elements in the Pearl River Delta of China: Potential impacts of the REE industry on water, suspended particles and oysters. Environ. Pollut. 244, 190-201.
  • NESBITT, H. W., 1979. Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature. 279, 206-210.
  • NANDI, B. K., GOSWAMI, A., PURKAIT, M. K., 2009. Adsorption characteristics of brilliant green dye on kaolin. J. Hazard Mater. 161(1), 387-395.
  • UNUABONAH, E. I., ADEBOWALE, K. O., OLU-OWOLABI, B. I., 2007. Kinetic and thermodynamic studies of the adsorption of lead (II) ions onto phosphate-modified kaolinite clay. J. Hazard Mater. 144(1-2), 386-395.
  • WONG, S., YAC'COB, N. A. N., NGADI, N., HASSAN, O., INUWA, I. M., 2018. From pollutant to solution of wastewater pollution: Synthesis of activated carbon from textile sludge for dye adsorption. Chinese J. Chem. Eng. 26(4), 870-878.
  • XU, Y., KIM, S. Y., ITO, T., TADA, T., HITOMI, K., ISHII, K., 2013. Adsorption properties and behavior of the platinum group metals onto a silica-based (Crea+ TOA)/SiO2–P adsorbent from simulated high level liquid waste of PUREX reprocessing. J. Radioanal. Nucl. Ch., 297(1), 41-48.
  • ZHOU, F., FENG, J., WANG, Z. Q., XU, Y. L., ZHANG, Z. Y., CHI, R. A., 2017. One step purification of impurities in the leachate of weathered crust elution-deposited rare earth ores. Physicochem. Probl. Mi. 53(2), 1188-1199.
  • ZHANG, Z. Y., HE, Z. Y., YU, J. X., XU, Z. G., CHI, R. A., 2016. Novel solution injection technology for in-situ leaching of weathered crust elution-deposited rare earth ores. Hydrometallurgy, 164, 248-256.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c8c3790c-f7be-44a4-a450-73f1a5a3a39a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.