PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Efficient Radio Resource Management in Cell-less Wireless Communication Systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the particle swarm optimization (PSO) method with dynamic generation of biasing factors is used to determine the optimal particle size, maximize cell spectral efficiency (CSE) and balance the load in 5G networks. This work studies two distinct interference scenarios: in the first approach, CSE is calculated with varying numbers of users, when different radio services are used by each tier (when several radio access technologies are used), and when interference is received by the consumer only from the same tier base stations (BSs). In the second approach, interference is created when all levels use the same radio services and interference from BSs belonging to the same tier and other tiers is received by the consumer. Simulation results show that the cell-less network performs better than the cellular network in terms of maximizing CSE and balancing the load.
Rocznik
Tom
Strony
1--8
Opis fizyczny
Bibliogr. 29 poz., rys., wykr.
Twórcy
  • College of Electronics Engineering Ninevah University, Mosul, Iraq
  • College of Electronics Engineering Ninevah University, Mosul, Iraq
Bibliografia
  • [1] S.A. Ahmed, S.A. Ayoob, and A.O. Al Janaby, “On the Performance of Multi-user Massive MIMO over mm Wave Channels”, 2021 7th International Conference on Contemporary Information Technology and Mathematics (ICCITM), Mosul, Iraq, 2021 (https://doi.org/10.1109/ICCITM53167.2021.9677730).
  • [2] S. Pietrzyk et al., “Open Cell-less Network Architecture and Radio Resource Management for Future Wireless Communication Systems”, (https://patents.google.com/patent/US20220210794A1), 2023.
  • [3] A.O. Al Janaby, A. Al-Omary, S.Y. Ameen, and H. Al-Rizzo, “Tracking and Controlling High-speed Vehicles via CQI in LTE-A Systems”, International Journal of Computing and Digital Systems, vol. 9, no. 6, pp. 1109–1119, 2020 (https://doi.org/10.12785/ijcds/090609).
  • [4] F. Kooshki et al., “Efficient Radio Resource Management for Future 6G Mobile Networks: A Cell-less Approach”, IEEE Networking Letters, vol. 5, no. 2, pp. 95–99, 2023 (https://doi.org/10.1109/LNET.2023.3263926).
  • [5] H.A. Ammar et al., “Downlink Resource Allocation in Multiuser Cell-free MIMO Networks with User-centric Clustering”, IEEE Transactions on Wireless Communications, vol. 21, no. 3, pp. 1482–1497, 2021 (https://doi.org/10.1109/TWC.2021.3104456).
  • [6] S. Kim, S. Park, H. Ji, and B. Shim, “AOA-TOA Based Localization for 5G Cell-less Communications”, 2017 23rd Asia-Pacific Conference on Communications (APCC), Perth, Australia, 2017 (https://doi.org/10.23919/APCC.2017.8304042).
  • [7] T. Al-shami, “Design of Innovative Access Protocols for Cell-less Architectures”, Ph.D. Thesis, University of York, 2020 (https://etheses.whiterose.ac.uk/28469/).
  • [8] G. Interdonato et al., “Ubiquitous Cell-free Massive MIMO Communications”, EURASIP Journal on Wireless Communications and Networking, vol. 2019, art. no. 197, 2019 (https://doi.org/10.1186/s13638-019-1507-0).
  • [9] A.O. Al Janaby, “5G Downlink Throughput Enhancement by Beams Consolidating at Vacant Traffic”, Journal of Communications Software and Systems, vol. 15, no. 4, pp. 311–316, 2019 (https://doi.org/10.24138/jcomss.v15i4.690).
  • [10] N. Wang, E. Hossain, and V.K. Bhargava, “Backhauling 5G Small Cells: A Radio Resource Management Perspective”, IEEE Wireless Communications, vol. 22, no. 5, pp. 41–49, 2015 (https://doi.org/10.1109/MWC.2015.7306536).
  • [11] T. Akhtar, C. Tselios, and I. Politis, “Radio Resource Management: Approaches and Implementations from 4G to 5G and Beyond”, Wireless Networks, vol. 27, pp. 693–734, 2021 (https://doi.org/10.1007/s11276-020-02479-w).
  • [12] V. Sciancalepore et al., “A Service-tailored TDD Cell-less Architecture”, 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia, Spain, 2020 (https://doi.org/10.1109/PIMRC.2016.7794957).
  • [13] Y. Al-Eryani, M. Akrout, and E. Hossain, “Multiple Access in Dynamic Cell-free Networks: Outage Performance and Deep Reinforcement Learning-based Design”, arXiv, 2020 (https://doi.org/10.48550/arXiv.2002.02801).
  • [14] A. Shen et al., “A Voronoi-based User-centric Cooperation Scheme in Cell-less Architecture”, 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 2021 (https: //doi.org/10.1109/WCNC49053.2021.9417317).
  • [15] C. Merlhe and C. Gueguen, “Dynamic Cell-less RadioAccessNetwork Meta-scheduler for High System Capacity Increase”, 2020 IEEE 21st International Symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), Cork, Ireland, 2020 (https: //doi.org/10.1109/WoWMoM49955.2020.00031).
  • [16] F. Kooshki, A.G. Armada, M.M. Mowla, A. Flizikowski, and S. Pietrzyk, “Energy-efficient Sleep Mode Schemes for Cell-less Ran in 5G and Beyond 5G Networks”, IEEE Access, vol. 11, pp. 1432–1444, 2022 (https://doi.org/10.1109/ACCESS.2022.3233430).
  • [17] F. de Oliveira Torres et al., “Throughput Maximization for a Multicarrier Cell-less NOMA Network: A Framework Based on Ensemble Metaheuristics”, IEEE Transactions on Wireless Communications, vol. 22, no. 1, pp. 348–361, 2022 (https://doi.org/10.1109/TWC.2022.3193328).
  • [18] F. Kooshki, M.M. Mowla, and A. Flizikowski, “Multi-architecture Coexistence Enabling Network Framework for 5G and Beyond Mobile Systems”, 2022 IEEE Conference on Standards for Communications and Networking (CSCN), Thessaloniki, Greece, 2022 (https://doi.org/10.1109/CSCN57023.2022.10051097).
  • [19] F. Kooshki, A.G. Armada, M.M. Mowla, and A. Flizikowski, “Radio Resource Management Scheme for URLLC and eMBB Coexistence in a Cell-less Radio Access Network”, IEEE Access, vol. 11, pp. 25090–25101, 2023 (https://doi.org/10.1109/ACCESS.2023.3256528).
  • [20] Y. Al-Eryani and E. Hossain, “A Dynamic Cell-less Architecture for Ultra-dense Wireless Networks”, IEEE ComSoc Technical Committees Newsletter, 2019 (https://www.comsoc.org/publications/tcn/2019-nov/dynamic-cell-less-architecture-ultra-dense-wireless-networks).
  • [21] E. Chiaramello et al., “Human-centric Decision-making in Cell-less 6G Networks”, arXiv, 2024 (https://doi.org/10.48550/arXiv.2402.14344).
  • [22] T. Jiang, A. Papadogiannis, D. Grace, and A.G. Burr, “EU FP7 BuNGee Project Deliverable 4.1.1 Interim Simulation”, European Commission FP7, 2011.
  • [23] L. Vanneschi and S. Silva, “Particle Swarm Optimization”, Lectures on Intelligent Systems, pp. 105–111, 2023 (https://doi.org/10 1007/978-3-031-17922-8_4).
  • [24] T.M. Shami et al., “Particle Swarm Optimization: A Comprehensive Survey”, IEEE Access, vol. 10, pp. 10031–10061, 2022 (https: //doi.org/10.1109/ACCESS.2022.3142859).
  • [25] S.Wang, F. Zhou, and F.Wang, “Effect of InertiaWeight ω on PSO-SA Algorithm”, International Journal of Online Engineering, vol. 9, pp. 87–91, 2013 (https://doi.org/10.3991/ijoe.v9iS6.2923).
  • [26] T.M. Shami, D. Grace, and A. Burr, “User Association in Cell-less 5G Networks Exploiting Particle Swarm Optimization”, 14th International Symposium on Wireless Communication Systems (ISWCS), 2017.
  • [27] T.M. Shami et al., “Velocity Pausing Particle Swarm Optimization: A Novel Variant for Global Optimization”, Neural Computing and Applications, vol. 35, no. 12, pp. 9193–9223, 2023 (https://doi.org/10.1007/s00521-022-08179-0).
  • [28] ITU, “Guidelines for Evaluation of Radio Interface Technologies for IMT-2020”, Report ITU, vol. 2512, 2017 (https://www.itu.int/pub/R-REP-M.2412-2017).
  • [29] 3GPP, “Evolved Universal Terrestrial Radio Access (E-UTRA); Further Advancements for E-UTRA Physical Layer Aspects (release 9)”, 3GPP TR 36.814 Release 9 V9.0.0, 2010 (https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2493).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c8bd69bf-d2c5-463e-bd1e-bc3c315cd150
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.