PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Respiratory system model based on PSPICE

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the present work is the building of a lumped nonlinear dynamic model of lung/airway mechanics using generic instead of specific software, in an attempt to offer an open simulation environment. Based on the analogy between pneumatic and electric magnitudes, an electrical equivalent circuit of the lung/airway mechanics is derived. Then, the nonlinear circuit elements are constructed by means of the powerful Analog Behavioral Modeling (ABM) building blocks and the system is solved using PSPICE. Following the approach in [3] and [4], five lumps are defined: two capacitors (elastances) corresponding to lung and collapsible airway segment and three resistors, corresponding to lung, collapsible airway segment and upper airway. The element definition involves as much as five parameters for the lung, four parameters for the collapsible segment and two parameters for the upper airway. The model does not attempt to mimic any particular system adjusting a given set of parameters but instead to provide a tool to explore the relationship between a given parameter or set of parameters and the system response. In particular, Forced Vital Capacity (FVC) maneuver and tidal breathing will be explored.
Twórcy
autor
  • Department of Electronic Engineering, Polytechnical University of Catalunya, Barcelona O8O34
Bibliografia
  • [1] Y. Fan, K. Cheung, M.M. Chong, H.D. Chua, K.W. Chow and C.H. Liu. “Computational Fluid Dynamics Analysis on the Upper Airways of Obstructive Sleep Apnea Using Patient-Specific Models”. Intl. Journal of Computer Science. Vol 38, No 4. Advance Online Publication.. Nov. 2011.
  • [2] K.S. Burrowes, A.J. Swan, N.J. Warren and M.H. Tawhai. “Towards a virtual lung: multi-scale, multi-physics modelling of the pulmonary system”. Phyl. Trans. Of The Royal Society A, Vol. 366, pp 3247-3263, July 2008.
  • [3] J.F. Golden, J.W. Clark,Jr. and P.M. Stevens. “Mathematical Modelling of Pulmonary Airway Dynamics”. IEEE Tr. On Biomedical Engineering, Vol. BME-2O, No. 6, pp 397-404, Nov. 1973.
  • [4] M.F. Olender, J.W. Clark, Jr. and P.M. Stevens. “Analog Computer Simulation of Maximum Expiratory Flow Limitation”. IEEE Tr. On Biomedical Engineering, Vol. BME-23, No. 6, pp 445-452, Nov. 1976.
  • [5] K.R. Lutchen, F.P. Primiano, Jr. and G.M. Saidel. “A Nonlinear Model Combining Pulmonary Mechanics and Gas Concentration Dynamics”. IEEE Tr. On Biomedical Engineering, Vol. BME-29, No. 9, pp 629-641, Set. 1982.
  • [6] S. Abboud, O. Barnea, A. Guber, N. Narkiss and I. Bruderman. “Maximum expiratory flow-volume curve: mathematical model and experimental results”. Mod. Eng. Phys. Vol. 17, No. 5, pp 332-336, 1995.
  • [7] C.H. Liu, S.C. Niranjan, J.W. Clark, Jr., K.Y. San, J.B. Zwischenberger, and A. Bidani. “Airway mechanics, gas exchange and blood flow in a nonlinear model of the normal human lung”. J. Appl. Physiol., Vol. 84, pp 1447-1469, 1998.
  • [8] A. Athanasiades, F. Ghorbel, J.W. Clark, Jr., S.C. Niranjan, J. Olansen, J.B. Zwischenberger, and A. Bidani. “Energy Analysis of a Nonlinear Model of the Normal Human Lung”. J. of Biological Systems, Vol. 8, No 2, pp 115-139, 2000.
  • [9] A.G. Polak and K.R. Lutchen. “Computational Model for Forced Expiration from Asymmetric Normal Lungs”. Annals of Biomedical Engineering, Vol. 31, pp 891-907, 2003.
  • [10] D.L. Fry and R.E. Hyatt. “A Unified Analysis of the Relationship Between Pressure, Volume and Gasflow in the Lungs of Normal and Diseased Human Subjects”. American Journal of Medicine, pp 672-689, Oct. 1960.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c8bae71e-2a45-46ad-a475-12d02709f455
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.