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In the paper the polynomial mean-square approximation method was applied, where 
the applied criterion was the value of the maximum error of the obtained approximation. 
The value of this error depends on the number of approximation points within the range. 
By changing the number of points within the range, it can be noticed that the value of 
the maximum error has the minimum value for a particular value of L number of 
considered points. For a polynomial of N degree, the optimum number of equidistant 
points of approximation L and the maximum error of approximation are determined. 
The proposed method was compared with a uniform approximation method, namely the 
Chebyshev polynomial. The examples included in the paper show that the proposed 
method yields smaller values of the maximum error than Chebyshev polynomial.
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1. Mean-square approximation uniform approximation

It is assumed that the series o f points x0, x1,...,xL and the values o f function 
f(x) in these points are given:

f  i = f  {xt ) ; i = 0,1,...,L  (1)
The following polynomial approximation is applied:

N
f a (  x) = ^  a }x J (2)

j =0

By replacing function f(x) with approximating function f a ( x )  the following error 
is obtained:

3  = fa (  x ) -  f  (3)
Mean-square approximation means minimization o f the following expression:

Y 4£l 2 = min (4)
i=0

Using the necessary condition o f existence o f a multiple-variable function 
extremum, from equations (1), (2), (3), (4), the following system of equations is 
obtained:
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N

2 c jka j  =  bk ; k  = N  (5)
j =0

where: c #  =  2  x t + k ; bk =  2  ^ f  • 
i=0 i=0 

The solution o f the system of equations (5) in the form of a matrix is 
described by the formula:

A = C -  B  (6)
where A  = \aj  ] - vector o f coefficients o f the polynomial fa(x) (equation (2)),

C = [c]k] ; B  = [bk ].

For the case when the number o f points x i is larger than the degree of 
polynomial N ( L > N ), it is actually approximation. However, for L = N  there 
is the case o f interpolation. The equations provided above are applicable for 
both the approximation and the interpolation.

Apart from a mean-square approximation (equation (4)) there is also a 
uniform approximation, which is defined by the condition:

max^-1 = min (7)
0 < i < L

where e i is described by (3).
In accordance with equation (7) the point is to minimize the maximum value 

of error within the interval under study. Among various methods applied in the 
uniform approximation, there are: Remez algorithm [2, 3], Pade 
approximations, Maclaurin series and Chebyshev polynomials [1, 3].

The scope o f this paper is limited to Chebyshev polynomials, where their 
application consisted in solving the problem of interpolation (L = N), where the 
knots fulfill the condition:

where: i = 0,1,..., N  (8)

i.e. they are roots o f the Chebyshev polynomial.
The solution is still determined by equation (6).

In the paper a method is proposed which draws on the fact that the maximum 
error o f a solution obtained using the mean-square approximation method is 
highly dependent on the number o f included points L + 1. Assuming the degree 
of polynomial N, figure L  is changed and the value o f the maximum error is 
determined. For a determined optimum value Lo , which ensures the smallest 
value o f the maximum error, the values o f polynomial (2) coefficients a }- are

determined. The method is based on equations (5) and (6), which refer to the 
mean-square approximation, but which refers to minimization o f the maximum
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xi = cos
( i  + 1 )  
2 (7 + 1 )
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error. The results o f the proposed method will be compared with the results 
obtained for the Chebyshev polynomials.

2. Calculation examples

Due to the application o f the Chebyshev polynomials, the following 
variability interval is assumed

x e ( - 14) (9)
Function f(x) is given by equation:

f  (x) = arctg (4 x) (10)
The proposed method consists in analyzing the value o f error:

\eQi\ = \fQ (x i) - f i \  (11)
where fQ (x i) - result o f the mean-square approximation including LA points of 
approximation.

Symbol EQ  refers to the maximum error for a given value LA:

EQ = max| eQ \  (12)
0 < i < LA

Fig. 1. Dependency of the value of maximum error EQ on the number of included points 
of approximation LA for a polynomial of degree five (N = 5)

Using Fig. 1 such a value LA is found which corresponds to the minimum 
value o f the maximum error EQ. The optimum value o f the number of 
approximation points equals LO = 105.
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In Fig. 2 absolute values o f the error obtained with the proposed method 
\eQi\ and the error of the Chebyshev polynomials method were compared:

|eQ | = \fC (x i) - f - | (13)

where: fC (x¿)- approximating function obtained for the Chebyshev 
polynomials.
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Fig. 2. Absolute values for the polynomial of degree five (N = 5): solid line \eCĄ (equation (13)) 

and dashed line\eQi\ (equation (11), LO = 105)

On the basis o f Fig. 2 the maximum values o f errors are determined, which 
equal EC = 0.0963 for the Chebyshev method EQ = 0.0789 for the proposed 
method. The determined value EQ = 0.0789 corresponds to the minimum value 
in Fig. 1.

The described process is repeated for the following values N = 3, 4, 14 
(degree o f the polynomial). The results of these calculations are presented in 
Fig. 3, where EA refers to the maximum value o f the error for the classic mean- 
square approximation conducted for L = 5000 points.

Fig. 3 shows that in the case o f the Chebyshev polynomials, the error for the 
polynomial o f degree three (N = 3) is smaller than for degree four N = 4. This 
situation reoccurs for the following pairs: N = 5/N = 6; N = 7/N = 8... It results 
from the fact that function f  (x) = arctg (4x) is an odd function in the interval

under study x e (-1,1). However, for error EQ (EA) it can be observed that the
value o f error determined for N = 3 is identical to the one determined for N = 4. 
Therefore, it is advisable to include only odd values o f a degree o f polynomial 
N, which is the case in Fig. 4.

Fig. 4 proves that, when considering all the three methods, the proposed 
method yields the smallest value o f the maximum error: EQ < EC < EA. It 
should be noticed that the classic approximation (EA) is only slightly worse 
than the Chebyshev polynomials method (EC).
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Fig. 3. Maximum absolute values of error in a function of polynomial degree N. Solid line with 
rectangles EC represents the Chebyshev polynomial, dashed line with circles EQ shows the error 

of an optimum polynomial and dashed line with pluses EA shows the error of the classic
approximation

Fig. 4. Maximum absolute values of the error in a function of a polynomial degree for odd N 
The labels used in this figure are identical to the ones in Fig. 3
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Figure 5 presents the dependence o f the number o f optimum points of 
approximation LO on the degree of polynomial N. This dependence can be 
described by a linear function o f a form:

L T  = - 1 .4 9 5  + 21.229 • N  (14)m m v '
As another example the following function was examined:

f  (x ) = ------ ^  (15)
1 + 25 • x2
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Nm = r o m

3 64
5 105
7 146
9 187

11 230

13 278

Fig. 5. Dependence of the number of optimum points of approximation LO on the degree 
of polynomial N. Solid line with circles represents empirical values and dotted line with x 
represents the results of the linear approximation (theoretical dependence, equation (14))

Fig. 6 includes the maximum absolute values o f the error in the function o f a 
degree o f polynomial N. The situation is similar to the one in Fig. 3 but the 
difference is that the smaller values o f error are obtained for even values o f the 
degree o f polynomial N. The reason for the difference lies in the fact that the 
function described by equation (15) is even.

Figure 7 shows that the results (EQ) o f the proposed method are burdened 
with the smallest values o f the maximum error. Interestingly, the classic mean- 
square approximation method yields a smaller maximum error than the 
Chebyshev polynomials method (EA < EC).Perhaps the reason lies in the fact 
that in the process, L = 5000 points o f approximation were taken into account, 
which approximately corresponds to the approximation conducted for a 
continuous function. This fact may be important, as in the case o f interpolation 
conducted for function (15) a strong Runge-Kutta effect can be observed. As for 
the Chebyshev polynomials method, it is an example o f interpolation with 
unevenly spaced knots.

Fig. 8 presents the dependence o f the number o f optimum points of 
approximation LO on the degree o f polynomial, where N is an even number.

Yet another example consists in determining errors o f approximation for a 
function described by the following dependence

f  (x) = ln( x +1.01) (16)
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Fig. 6. Maximum absolute values of error in the function of a degree of polynomial N. 
The labels used in this figure are identical to the ones in Fig. 3

Fig. 7. Maximum absolute values of error in the function of a degree of polynomial N, 
where N is an even value. The labels used in this figure are identical to the ones in Fig. 3
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N m = LOm =

Fig. 8. Dependence of the number of optimum points of approximation LO on a degree
of polynomial N

Figure 9 presents the curve o f the function described by equation (16) for a 
given interval, x e (-1,1).

Fig. 9. Curve of the function described by equation (16) for a given interval, x e  <- u>

K l
|eQ|

Fig. 10. Absolute values of the error for the polynomial of degree 5 (N=5): solid line |eC;- 
and dashed line \eQj | ( LO=31)
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Figure 10 includes examples o f absolute values of the error for a polynomial 
o f degree 5 (N = 5): solid line |eC; | and dashed line \eQi\ (LO = 31). From
Fig. 10 maximum values o f errors can be identified, which equal FC = 1.063 for 
the Chebyshev method and FQ = 0.474 for the proposed method.

Fig. 11 presents the values o f the maximum error for particular methods. It 
clearly shows the advantage o f the proposed method over the other methods. 
Apart from that, the error o f the Chebyshev method is similar to the error o f the 
classic mean-square approximation method.
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Fig. 11. Values of the maximum error for particular methods. Labels as in Fig. 3

= L O r

~ 3 ~ \4

~ 4 "22"
~ 5 "3?
~ 6

"53"
~ 8 ~66

9 "8?
To" ~96

Fig. 12. Dependence of the number of optimum points of approximation LO on a degree
of polynomial N

By introducing a new variable identified as:

LO m
L m N m

(17)

2

0
3 4

N m
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for which the linear approximation was conducted, the following was obtained:
L T m = 2.643 + 0.701 • N m (18)

Based on Fig.13, which illustrates the dependence of variable L on a degree of 
polynomial N, it can be observed that equation (18) fits empirical data.
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Fig. 13. Dependence of variable L (equation (17)) on the degree of polynomial N. Solid line 
with circles represents empirical values and dotted line with x represents the results 

of the linear approximation (theoretical dependence, equation(18))

f  (x) = c° s[ ^  • x j (19)

As the final example, a following function is examined:
' n

Taking into account the evenness o f cosine function, only even values o f a 
degree o f polynomial N were considered. Fig. 14 presents maximum values of 
error for particular methods. Due to small values o f the error, a logarithmic 
scale was applied. Fig. 14 indicates close similarity o f error values for the 
methods under study. With a view of explaining this problem, quotients of 
errors are introduced in the forms:

EC 1-1 EAm
EQ 7 EQ 2̂0)

Figure 15 shows that the ratio o f the maximum error for the Chebyshev 
method to the maximum error for the proposed method falls within 
intervalecm e  (1 .39 ,1 .89). Similarly, for the classic approximation method,

the ratio falls w ithineam e  (1 .74 ,2 .13). It clearly proves a considerable

advantage o f the proposed method over the other methods, which was not 
clearly visible in Fig.14.
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Fig. 14. Values of the maximum error for particular methods. Labels as in Fig. 3
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Fig. 15. Values of quotients of maximum errors (equation (20))

3. Summary

On the basis of the aforementioned examples, it can be concluded that the 
Chebyshev polynomials method has no considerable advantage over the mean- 
square approximation method: smaller values o f the maximum error EC than 
EA were observed for the function described by equation (19), similar values 
EC and EA were obtained for function (10) and (16), however for function (15) 
EA < EC is the case.
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In all the examined cases, the proposed method yields smaller values o f the 
maximum error, yet the most substantial difference is observed for function 
(16), where quotients derived from equation (20) fulfill inequality ecm > 2;

eam > 2 .
While analyzing particular examples, the dependence o f the optimum 

number o f approximation points LO on a degree o f polynomial N was provided. 
However no theoretical dependence, true for all the examples, could be found. 
Hence the only way is to determine optimum LO empirically. The algorithm is 
as follows:
1. As the number o f approximation points assume LA=L and LA=L+1, 

if EQ(L) > EQ(L+1), then (according to Fig.1) assume LA=L+2;
2. if EQ(LA) < EQ(LA+1),then take LA as a result;
3. the algorithm can be made faster by enlarging the step size, e.g. from one to five.
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