PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Elastomeric matrix composites: effect of processing conditions on the physical, mechanical and viscoelastic properties

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of this study is to investigate the influence of accelerator-vulcanizing agent system and the vulcanization temperature on the properties of vulcanizates based on Natural rubber/Polybutadiene rubber (NR/ BR) compounds. This preliminary study will allow optimizing the composition for improving the mechanical properties and understanding the damage behaviour. Design/methodology/approach: NR/BR based composites with different vulcanization temperatures and curing systems were characterized in respect of their curing characteristics (for 140°C and 160°C) and mechanical properties. The cure characteristics of the rubber compounds were studied by using the Monsanto MDR 2000 rheometer. The mechanical properties were investigated- tensile strength, elongation at break, tensile modulus at 100% (M100) and at 300% (M300) deformation. The hardness (Shore A) and molecular mass of the samples were also determined. Scanning electron microscopy was used to study the microstructure of the fracture surfaces. Findings: The processing, physical, mechanical and viscoelastic properties and chemical structure of the mixture of Natural rubber/Polybutadiene rubber (NR/BR) compounds have been evaluated in detail for the compounds of D1 and D2 (140/160). Research limitations/implications limitations/implications: Some critical point, control of the temperature during vulcanization in press, can introduce some restrictions; these measurements can play on the final vulcanizates and in the course of processing. Practical implications: In practical way, mechanical test results (tensile and shore A) give very useful information about the damage behaviour of the elastomeric matrix composites. Originality/valut: Natural rubber/Polybutadiene rubber (NR/BR) compounds were mixed by additions of some certain elements to improve physical, mechanical and viscoelastic properties and damage behaviours of these compounds produced under certain conditions.
Rocznik
Strony
81--91
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
  • University of Chemical Technology and Metallurgy, 8 Kliment Ohridski blvd., Sofia 1756, Bulgaria
  • Supmeca/LISMMA-Paris, School of Mechanical and Manufacturing Engineering, France
autor
  • Supmeca/LISMMA-Paris, School of Mechanical and Manufacturing Engineering, France
autor
  • Supmeca/LISMMA-Paris, School of Mechanical and Manufacturing Engineering, France
autor
  • University of Chemical Technology and Metallurgy, 8 Kliment Ohridski blvd., Sofia 1756, Bulgaria
Bibliografia
  • [1] R.S. Rivlin, A.G Thomas, Rupture of Rubber, Part 1, Characteristic energy for tearing, Journal of Polymers Sciences 10 (1953) 291-318.
  • [2] G.J. Lake, Fatigue and fracture of elastomers, Rubber Chemical Technology 66 (1995) 435-460.
  • [3] H.W. Greensmith, The change in Stored Energy on Making a Small Cut in a Test Piece held in Simple Extension, Journal of Polymer Science 7 (1963) 993-1002.
  • [4] P.B. Lindley, Energy for crack growth in model rubber components, Journal Strain Analysis 7 (1972) 132-140.
  • [5] A.N. Gent, M.R. Kashani, Why do cracks turn sideways?, Rubber Chemistry and Technology 76 (2001) 122-131.
  • [6] R. Luong, N. Isac, E. Bayraktar, Damage initiation mechanisms of rubber, JAMME, journal of archives of materials science and engineering 28/1 (2007) 19-26.
  • [7] R. Zulkifli, L.K. Fatt, C.H. Azhari, J. Sahari, Interlaminar fracture properties of fibre reinforced natural rubber/polypropylene composites, Journal of Materials Processing Technology 128/1-3 (2002) 33-37.
  • [8] A.S. Aprem, K. Joseph, R. Laximinarayanan, S. Thomas, Physical, Mechanical and viscoelastic properties of NR vulcanizates cured with new accelerator system, Journal of applied polymer Science 87 (2003) 2193-2203.
  • [9] T.D. Farahani, GR. Bakhshandeh, M. Abtahi, Mechanical and Viscoelastic properties of Natural Rubber/Reclaimed rubber Blends, Polymer Bulletin 56 (2006) 495-505.
  • [10] K. Bessri, F. Montembault, E. Bayraktar, C. Bathias, An Understanding of Mechanical Behaviour and Damage Mechanism in Elastomers Using X-Ray Computed Tomography at Several Scales, International Journal of Tomography and Statistics 14/S10 (2010) 29-40.
  • [11] J.A. Brydson, Natural Rubber in: Rubber Materials and Their Compounds Elsevier Science Publishers LTD, New York, 1988
  • [12] D.S. Botelho, E. Bayraktar, Experimental and numerical study of damage initiation mechanism in elastomeric composites-Double Cantilever Beam specimens (DCB), Journal of Achievement in Materials and Manufacturing Engineering 36/1 (2009) 65-71.
  • [13] S. Varghese, J. Karger-Kocsis, K.G Gatos, Melt compounded epoxidized of natural rubber/layered silicate nanocomposites; structure-properties relationships, Polymer, 44/14 (2003) 3977-3983.
  • [14] D.S. Botelho, N. Isac, E. Bayraktar, Modeling of damage initiation mechanism in rubber sheet composites under the static loading, International Journal of Achievement in Materials and Manufacturing Engineering 22/2 (2007) 55-59.
  • [15] N. Sombatsompop, Dynamic mechanical properties of SBR and EPDM vulcanizates filled with cryogenically pulverized flexible polyurethane foam particles, Journal of Applied Polymer Science 74/5 (1999) 1129-1140.
  • [16] A.N. Gent, L.Q. Zhang, Polymer physics, Journal of Polymer Science B 39 (2001) 811-817.
  • [17] E. Bayraktar, S.D. Antolovich, C. Bathias, New developments in non-destructive controls of the composite materials and applications in manufacturing engineering, JMPT, Journal of Materials Processing Technology 206/1-3 (2009) 30-44.
  • [18] C. Kumnuantip, N. Sombatsompop, Dynamic mechanical properties and swelling behavior of NR/reclaimed rubber blends, Materials Letters 57 (2003) 3167-3174.
  • [19] E. Bayraktar, K. Bessri, C. Bathias, Deformation behaviour of elastomeric matrix composites under static loading conditions, Engineering Fracture Mechanics 75/9 (2008) 2695-2706.
  • [20] G.F. Bloomfield, C.M. Blow, C. Hepburn, Raw polymeric materials, Rubber Technology and Manufacture, London, 1982.
  • [21] H. Ghaemi, K. Behdinan, A. Spence, On the development of compressible pseudo-strain energy density function for elastomers, Part 1, Theory and experiment, Journal of Materials Processing Technology 178/1-3 (2006) 307-316.
  • [22] E. Bayraktar, N. Isac, K. Bessri, C. Bathias, Damage mechanisms in natural (NR) and synthetic rubber (SBR): nucleation, growth and instability of the cavitation, International Journal of Fatigue and Fracture of the Structural Materials 31/1 (2008) 1-13.
  • [23] J. Wu, J. Huang, N. Chen, C. Wei, Y. Chen, Preparation of modified ultra-fine mineral powder and interaction between mineral filler and silicone rubber, JMPT, Journal of Materials Processing Technology 137/1-3 (2003) 40-44.
  • [24] M.H. Makled, T. Matsui, H. Tsuda, H. Mabuchi, M.K. El-Mansy, K. Morii, Magnetic and dynamic mechanical properties of barium ferrite-natural rubber composites, Journal of Materials Processing Technology 160/2 (2005) 229-233.
  • [25] D.S. Botelho, N. Isac, E. Bayraktar, A comparative study on the damage initiation mechanism of elastomeric composites-thin sheets, Archives of Journal of Computational Materials Science and Surface Engineering 1/2 (2009) 112-119.
  • [26] K.C. Baranwal, Basic elastomer technology, Rubber Division ACS, Baltimore, 2001.
  • [27] W.V. Mars, A. Fatemi, Multiaxial stress effects on fatigue behaviour of filled natural rubber, Journal of Fatigue 28/5 (2006) 521-529.
  • [28] D. Zaimova, E. Bayraktar, N. Dishovsky, State of cure evaluation by different experimental methods in thick rubber parts, Journal of Achievements in Materials and Manufacturing Engineering 44/2 (2011) 161-167.
  • [29] L. Gonzalez, A. Rodriguez, J.L. Valentin, A. Marcos-Fernandez, P. Posadas, K.G. Kunstst, Conventional and efficient cosslinking of natural rubber, Kautschuk Gummi Kunststoffe 58 (2005) 638-643.
  • [30] S Thiruvarudchelvan, Elastomers in metal forming, A review, Journal of Materials Processing Technology 39/1-2 (1993) 55-82.
  • [31] A. Azura, A.G Thomas, Effect of heat ageing on cross linking scission and mechanical properties, V. Coveney (Ed.) Elastomer and components: Service life prediction -progress and challenges, Woodhead Publishing, Cambridge, 2006
  • [32] F. Ayari, E. Bayraktar, A. Zghal, Damage of elastomeric matrix composites under static loading conditions: experimental and numerical study, Journal of Materials Physics and Applications 1/1 (2011) 49-54.
  • [33] R.L. Fan, V. Zhang, C. Huang, Y. X. Zhang, K. Sun, Y. Z. Fan, Effect of high-temperature curing on the crosslink structures dynamic mechanical properties of gum and N330-filled natural rubber, Polym. Testing 20/8 (2001) 925-936.
  • [34] J.E. Mark, B. Erman, F.R. Erich, Science and technology of rubber, Elsevier Inc, 2005.
  • [35] O.A. Al-Hartomy, A. Al-Ghamdi, N. Dishovsky, M. Ivanov, M. Mihaylov, F. El-Tantawy, Influence of carbon black structure and specific surface area on the mechanical and dielectric properties of filled rubber composites, International Journal of Polymer Science ID 521985 (2011) 1-8.
  • [36] A.D. Drozdov, J. Christiansen, Thermo-viscoplasticity of carbon black-reinforced thermoplastic elastomers, International Journal of Solids and Structures 46/11-12 (2009) 2298-2308.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c8b1a350-c695-4be8-9e52-b33f1274f30e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.