PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zero-Suppression Trigger Mode for GEM Detector Measurement System

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A novel approach to a trigger mode in the Gas Electron Multiplier (GEM) detector readout system is presented. The system is already installed at WEST tokamak. The article briefly describes the architecture of the GEM detector and the measurement system. Currently the system can work in two trigger modes: Global Trigger and Local Trigger. All trigger processing blocks are parts of the Charge Signal Sequencer module which is responsible for transferring data to the PC. Therefore, the article presents structure of the Sequencer with details about basic blocks, theirs functionality and output data configuration. The Sequencer with the trigger algorithms is implemented in an FPGA chip from Xilinx. Global Trigger, which is a default mode for the system, is not efficient and has limitations due to storing much data without any information. Local trigger which is under tests, removes data redundancy and is constructed to send only valid data, but the rest of the software, especially on the PC side, is still under development. Therefore authors propose the trigger mode which combines functionality of two existing modes. The proposed trigger, called Zero Suppression Trigger, is compatible with the existing interfaces of the PC software, but is also capable to verify and filter incoming signals and transfer only recognized events. The results of the implementation and simulation are presented.
Słowa kluczowe
EN
FPGA   GEM   trigger   sequencer   DAQ   Xilinx  
Twórcy
  • Institute of Electronic Systems, Faculty of Electronics and Information Technology, University of Technology, Warsaw, Poland
  • Institute of Electronic Systems, Faculty of Electronics and Information Technology, University of Technology, Warsaw, Poland
  • Institute of Electronic Systems, Faculty of Electronics and Information Technology, University of Technology, Warsaw, Poland
  • Institute of Electronic Systems, Faculty of Electronics and Information Technology, University of Technology, Warsaw, Poland
  • CERN, Geneva, Switzerland
autor
  • Institute of Electronic Systems, Faculty of Electronics and Information Technology, University of Technology, Warsaw, Poland
  • Institute of Electronic Systems, Faculty of Electronics and Information Technology, University of Technology, Warsaw, Poland
  • Institute of Electronic Systems, Faculty of Electronics and Information Technology, University of Technology, Warsaw, Poland
  • Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
  • Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
Bibliografia
  • [1] D. Mazon et al., ”Design of soft-X-ray tomographic system in WEST using GEM detectors”, Fusion Engineering and Design vol. 96-97, pp. 856-860 (2015).
  • [2] M. Chernyshova et al., ”Design and development of soft x-ray diagnostics based on GEM detectors at IPPLM”, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2019111764F (2019).
  • [3] A. J. Wojenski et al., ”Multichannel reconfigurable measurement system for hot plasma diagnostics based on GEM-2D detector”, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms vol. 364, pp. 49-53 (2015).
  • [4] D. Mazon et al., ”GEM detectors for WEST and potential application for heavy impurity transport studies”, Journal of Instrumentation vol. 11 (2016).
  • [5] W. Zabołotny et al., ”FPGA and Embedded Systems Based Fast Data Acquisition and Processing for GEM Detectors”, Journal of Fusion Energy vol. 38, pp. 480-489 (2019).
  • [6] P. Linczuk et al., ”Measurement capabilities upgrade of GEM soft X-ray measurement system for hot plasma diagnostics”, International Journal of Electronics and Telecommunication This volume.
  • [7] G. Kasprowicz et al., ”Fast modular data acquisition system for GEM-2D detector”, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 201492902F (2014).
  • [8] A. Wojenski et al., ”Multichannel measurement system for extended SXR plasma diagnostics based on novel radiation-hard electronics”, Fusion Engineering and Design vol. 123, pp. 727-731 (2017).
  • [9] A. Wojenski et al., ”FPGA-based GEM detector signal acquisition for SXR spectroscopy system”, Journal of Instrumentation vol. 11 (2016).
  • [10] P. Kolasinski et al., ”GEM detector charge signals sequencer implementation for WEST experiment”, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2019111764D (2019).
  • [11] P. Kolasinski et al., ”Serial data acquisition for GEM-2D detector”, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 201492902H (2014).
  • [12] T. Czarski et al., ”Serial data acquisition for the X-ray plasma diagnostics with selected GEM detector ”, Journal of Instrumentation vol. 10 (2015).
  • [13] P. Kolasinski et al., ”Modeling and implementation of the GEM detector charge signals sequencer for the hot plasma tokamak fast diagnostics system”, Przeglad Telekomunikacyjny + Wiadomosci Telekomunikacyjne vol. 4, pp. 86–91 (2018).
  • [14] P. Kolasinski et al., ”FPGA based fast, low latency serialization system for measurement data”, Elektronika : konstrukcje, technologie, zastosowania vol. 58, pp. 4–45 (2017).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c8ad1fa5-cf8f-4875-9822-b85138ae44c8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.