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Abstract. A generalized Cauchy problem for quasilinear hyperbolic functional differential
systems is considered. A theorem on the local existence of weak solutions is proved. The
initial problem is transformed into a system of functional integral equations for an unknown
function and for their partial derivatives with respect to spatial variables. The existence of
solutions for this system is proved by using a method of successive approximations. We show
a theorem on the differentiability of solutions with respect to initial functions which is the
main result of the paper.
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1. INTRODUCTION

For any metric space U and V we denote by C(U, V) the class of all continuous
functions from U into V. We use vectorial inequalities with the understanding that
the same inequalities hold between their corresponding components. Suppose that
M € C([0,a],R%}), a > 0, Ry = [0,+00), is nondecreasing and M (0) = Op,], where
Oy = (0,...,0) € R™. Let E be a generalized Haar pyramid

E={(t,x) e R"™™: t€[0,a], =b+ M(t) <z <b— M(t)},
where b € R” and b > M(a). Write Ey = [—bo, 0] x [—b, b], where by € R and
Eoi= (EoUE)N ([~bo,a;] xR™), i=1,...,k,
where 0 < a; <afor 1 <i <k. For (t,z) € E define

Dlt,z] ={(r,y) eR™*": 7 <0, (t+7,2+y) € Eg UE}.
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Set
DO[tvﬂ = [*bO — 1, *t] X [71) - va - ‘T]a
Dit,z] ={(r,y): —t<7<0, =b—ax+Mr+t)<y<b—z—-M(+1)}.
Then DIt,z] = Dolt,z] U D,[t,z) for (¢t,z) € E. Write ro = —by — a, r = 2b and
B = [~70,0] x [-r,7]. Then D[t,x] C B for (t,z) € E. Given z : Ey U E — R* and
(t,z) € E, define z(; 4 : D[t,z] — RF by

Z(t,x)(7-7 y) = Z(t +7,%+ y)7 (Ta y) € D[t,l‘]

Then z(; ;) is the restriction of z to (EO U E) N ([fbo, t] x R”) and this restriction is
shifted to D[t, x].

Suppose that ¢g : [0,a] = R and ¢ = (¢1,...,¢,) : E — R™ are given functions
such that 0 < ¢o(¢) < ¢ and (¢o(t),é(t,x)) € E for (t,x) € E. Write p(t,z) =
(60(t), 6(t,)) for (t,) € B,

Let My, denote the set of all £ x n matrices with real elements. If X € My,
then X7 is the transpose matrix. The scalar product in R™ is denoted by “o”. Put
Q) = F x C(B,R*) and suppose that

F: Q= Myxn, F = [Fy] G:Q—=RF G=(Gy,...,Gp),

=1, ki =1,
are given functions of the variables (¢, z,w), x = (z1,...,2,), w = (w1,...,wg). For
the above F' we put Fi;) = (Fiq, ..., Fy,) wherei = 1,... k.

We will say that F' and G satisfy condition (V) if for each (¢,x) € E and for w,w €
C(B,R¥) such that w(r,y) = w(r,y) for (1,y) € D[p(t,z)] we have F(t,z,w) =
F(t,z,w) and G(t,z,w) = G(t,z,w). The condition (V) means that the values of F'
and G at the point (¢,z,w) € Q depend on (t,z) € E and on the restriction of w to
the set D[p(t, z)] only. Let us denote by z = (z1, ..., 2x) an unknown function of the
variables (¢, ). Given v, : Eg; — R, i =1,...,k, we consider the system of functional
differential equations

Opzi(t, ) + Fly (8, 7, 2p(t,0)) © Onzi(t, ) = Gi(t, 2, 254,2)), 1 =1,...,k, (1.1)
with the initial conditions
zi(t,x) = i(t,x)on By, t=1,...,k, (1.2)

where 0,2, = (0p,2iy...,0z, %), 1 < i < k. We assume that F' and G satisfy the
condition (V). System (1.1) with initial conditions (1.2) is called a generalized Cauchy
problem. If a; = 0 for i = 1,...,k then (1.1), (1.2) reduces to the classical Cauchy
problem.

Write k = min{a; : 1 <i <k}, K =max{a;: 1 <i<k}and
Et:(EOUE)m([beat]XRn% St:[7b+M(t)abe(t)]v OStSQ,
Iz ={t €lai,c]: =b+ M) <z <b-—M(t)}, i=1,...,k,

Izl ={t€[0,a] : =b+ M(t) <z <b— M(t)},
where x € [—b,b] and & < ¢ < a. We consider weak solutions of initial problems.
A function Z : E, — R¥, 2 = (%1, ..., %), where @ < ¢ < a, is a solution of (1.1), (1.2)
provides that:
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(i) Z is continuous and the derivatives 0,%; = (0u, Zi, - - ., Ox, 2;) €xist on
En([ai,c] xR™) for 1 <i<k,
(ii) for each 4, 1 < ¢ < k, and = € [=b,b], the function Z;(-,x) : I.;[z] — R is
absolutely continuous,
(iii) for each z € [—b,b] and for 1 < ¢ < k, the i-th equation in (1.1) is satisfied for
almost all ¢ € I ;[x] and conditions (1.2) hold.

The following problems are considered in the paper. Under natural assumptions on
given functions we prove that there exists exactly one solution to (1.1), (1.2) defined
on E. and we give an estimate of the constant ¢ € (R, a.

Denote by X the class of all ¥ = (¢1,...,%k), ¥; : Eo; — R for 1 < i <k, such
that there exists exactly one solution E[¢)] = (E1[¢], ..., Eg[¢]) to (1.1), (1.2). We give
a construction of the space X. Denote by A;[¢)], 1 < i < k, the i-th bicharacteristic
of (1.1) corresponding to Z[)]. We prove that for each ¢ € X there exists the Fréchet
derivatives 9Z;[¢] and dA;[¢] of E; and A; at the point ¥ € X, 1 <4 < k. Moreover,
if 1,9 € X then the functions (92 [¢]V,...,0=,[]0) and OA;[¥]Y, 1 < i < k, are
solutions of a linear integral functional system generated by (1.1), (1.2).

Numerous papers were published concerning various problems for first order par-
tial functional differential equations or systems. The following questions have been
considered: functional differential inequalities generated by initial or mixed problems
and their applications, uniqueness of solutions and continuous dependence on ini-
tial or initial boundary conditions, existence theory of classical or weak solutions of
equations or finite systems with initial or initial boundary conditions, approximate
solutions of functional differential problems. It is not our aim to show a full review
of papers concerning the above problems. We shall mention only those which contain
such reviews. They are [1-3,5-9,12,16,18-21,23] and the monograph [15].

In the paper we start investigations of the differentiability of solutions with re-
spect to initial functions. The monographs [11,17] contain results on the regularity of
solutions of initial problems for ordinary functional differential equations. Differential
systems with deviated variables and differential integral problems are particular cases
of systems considered here.

2. INTEGRAL FUNCTIONAL EQUATIONS

For x € R", p € R¥, X € Mjy,, where z = (z1,...,2,), p = (p1,---,Dk);

X = [xij]iﬂ k1. W€ define the norms

n

Izl = |wil, Il = max{|pi| : 1 <i <k},

i=1

1 X | =maX{inj| P 1<i< k}

j=1
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For z € C(Ey U E,R¥), v € C(Ey U E,R"), u € C(EyU E, Mx,), we define the
seminorms

12l (e, rey = max{[[2(7,y)lloo = (1,9) € Ei}, [0l mn) = max{[Jo(m,y)|| = (1,y) € B},

l[ull(t,a1,,,) = max{[lu(r, y)[kxn = (7,9) € Et},
where t € [0,a]. The norm in the space C(B,R¥) is given by

wl|p = max{|lw(r,y)ll : (7,y) € B}.

We denote by CL(B,R) the set of all linear and continuous functions defined on
C(B,R) and taking values in R. Let || - ||« be the norm in CL(B,R) generated by
the maximum norm in the space C(B,R). Let CL(B, Myxy,) be the class of all Y =
[}/ij]izl,...,k,jzl,..“n such that Y;; € CL(B,R), i =1,...,k,j=1,...,n. For Y €
CL(B, Mgxn) Welput

[V [[kxnss = max { SOVl 1<i < k}

j=1

In a similar way we define the space CL(B,RF). Let L([7,t], Mxn), [7,t] C R, denote
the class of all integrable functions VU : [1,t] = Mgx,. In a similar way we define the
space L([r,t], RY).

We will say that FF : Q@ — My, satisfies the Carathéodory conditions if
F(,,z,w) € L(I[z], Mgxn), where (z,w) € [=b,b] x C(B,R¥) and F(t,-) : S; x
C(B,R¥) — Mj,«,, is continuous for ¢ € [0, a]. In a similar way we define Carathéodory
conditions for G : @ — R* and for the derivatives
, 0uFy) = 00, Fipl] i=1,...k

p,v=1,...,n’

0,6 = [0.,G,],

=1,....k,v=1,....n
Suppose that there exist the Fréchet derivatives

c’)me(P) = [&Uqu(P)] P = (t,x,w) e, 1<i<k,

p=1,...,n,v=1,....k
and 0y F;)(P) € CL(B,Myxy) for P € Q, 1 < i < k. We will say that 9, Fj;,
1 < i <k, satisfy the Carathéodory conditions if the functions 9, Fp;(t,-) : S x
C(B,R¥) — CL(B, M, x1), 1 <i < k, are continuous for ¢ € [0,a] and for (z,w) €
[~b,b] x C(B,R¥), w € C(B,R) we have

awF[i](')wi)wEL(I['xLMnXk)) i:17"'7ka

where
awF[i] (ta xz, 'LU)’LD = [awyFiu(ta Z, ”LU)”LT}]

p=1,...,nwv=1,.. k"

In a similar way we define Carathéodory conditions for the Fréchet derivatives

0uG(P) = [0, Gu(P)] Peq.
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Assumption Hy[F]. The function F': Q — My, satisfies the condition (V') and
1) the Carathéodory conditions for F hold and there is L € L([0,a],R%),
L= (Ly,...,Ly,), such that
(|Fﬂ(t,x,w)|, cel |Lm(t,x,w)\) < L(t) on Q for 1 <i<k,

2) for t € [0, a] we have

t
M(t) = /L(T)dT.
0
Assumption Hp]. The functions ¢ : [0,a] = R, ¢ : E — R™ are continuous and

1) 0 < ¢o(t) <tfortel0,a] and (t,x) = (¢o(t), p(t,x)) € E for (t,z) € E,
2) there exist the derivatives

6.L¢(t7 Z‘) = [awl’dju(t’ .’13)] w,v=1,...,n

and 0,¢ € C(E, My xn),
3) the constant @ > 0 is defined by

Q = max{[|0:6(t, )|[nxn = (t,2) € E}
and there is Qo € R, such that

1026, ) = 020 (t, y)[lnxn < Qollz —yll,  (t,2),(ty) € E.

Given ¢ = (co,c1,¢2) € R, we denote by X the set of all ¢» = (¢1,..., 1) such
that for each i, 1 < i < k we have:

(i) ¥; € C(Ey;,R), the derivatives 0,¢; = (O, Vi, ..., 04, %;) exist on Fy; and
du; € C(Eo.i, R™),
(i) the estimates
[vi(t, @) < co, [|029i(t 2)]| < e,

[029i(t, ) — Dt (t, y)|| < callz — vyl
are satisfied on FEj ;.

Let ¥ € X, ¢ = (¥1,...,¢g), be given and & < ¢ < a. We denote by Cy . the
class of all z € C(E.,R¥), z = (z1,...,2), such that z(t,z) = ¥;(t,z) on Ey; for
1 < i < k. For the above ¢ and ¢ € (&, a] we denote by Cay, ., 1 <i < k, the class of
all v € C(E.,R™) such that v(t,z) = 0y (t, z) on Ey.;.

Suppose that Assumption Hp], Ho[F] are satisfied and ¢ € X, z € Cy.,
& < ¢ < a. Let us denote by g;[2](-, ¢, ) the solution of the Cauchy problem

7]/(7-) = F[z] (T’ 77(7-)7 Zgo('rm(‘r)))a U(t) =, (21)

where (t,2) € E, and a; <t < c. The function gp;)[2](-, ¢, z) is the i-th bicharactersitic
of (1.1) corresponding to z.
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Lemma 2.1. If Assumptions Hp], Ho[F] are satisfied and ¢ € X, z € Cy.,
k<c<a,1<i<k, then the bicharacteristic g;)[2](-,t,x) is defined on [a;,t].

Proof. The local existence of a solution to (2.1) follows from classical theorems on
Carathéodory solutions for ordinary differential equations. Suppose that [to,t] is the
interval on which the bicharacteristic gp;)[2](-, ¢, ) is defined. Then

—L(r) < %gm [z](1,t,x) < L(1) for 7 € [to,t]

and consequently
—b+ M(7) < giyl2](r,t,2) <b—M(7) for 7€ [to,t].

Then the bicharacteristic gj;[2](-, ¢, z) is defined on [a;, t]. This is the desired conclu-
sion. O

Write Fz] = (Fy[z],...,Fi[z]), where

F;i[2](t,2) = ¢i(t,z) on Ep., (2.2)
and
Fi[2](t, ©) = iaq, g [2](ai, t, )+
/ (2.3)
+ / Gy, 9] [2](7,t, x), 2o (7,91 [z](r,t,x))) dr on E.\ Ey,
where i = 1,...,k. We consider the functional integral equation
z = Flz]. (2.4)

It is easy to give sufficient conditions for the existence and uniqueness of a continuous
solution 7 : E. — R* Z = (Zy,..., %), of (2.4). We consider solutions to a functional
differential problem (1.1), (1.2). Then the main question in our investigations is to
prove that there exist the derivatives 0;2;, 0:%; = (0, Zi,- .., 04, %) on E. \ Ey; for
1 < i < k. We show that under natural assumptions on given functions there exists
U B = Mysen, @ = [tg],_y oy such that i = (@1, ... in) € Coy,.c and
Uf = 0z%; on B\ Eg g, where 1 <i < k.

Assumption H,[F,G]. The function G : Q — R¥ satisfies condition (V') and

1) the Carathéodory conditions for G hold and there is o € L([0,a],R) such that
[G(t, 2,0)|loc < (t) on E, where § € C(B,R*) is given by (7,y) = O on B and
O[k] = (O,...,O) S Rk,

2) Assumption Hg[F] is satisfied and there exist the derivatives

092G = [0, Gy ] . 0uFyy) = [0, Fiy |

p=1,...k,v=1,..,n pv=1,...,n

and the functions 0,G , 0, F};), © = 1,..., k, satisfy the Carathéodory conditions,
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3) for P = (t,x,w) € Q there exist the Fréchet derivatives

8wG(P) = [8UJVGM(P)] 6wF[z](P) = [awyFiu(P)]

wyv=1,...,k’ p=1,...n,v=1,.. .k

and the functions 0,G, Oy Fl;), i = 1,.. ., k, satisfy the Carathéodory conditions,
4) there is 8 € L([0, a],R;) such that
[0:G (8, 2, w)lkxcns [[0wG(Ez, w)[kxkx < B(E) on Q
and
102 iy (t, 2, w) lnxns 10w i (8 2, w) lnxie < B(E) on Qfor i=1,... k.

For © € CL(B,R) and w € C(B,R"), w = (w1,...,W,) we define © x w =
(©w1,...,0w,). For a function u : E. — Mixn, u = [uij]i:L...,k,j:l,...,n we put
ug) = (Wit, - - -, Uin) and

Uy = [(Uig) o))y et () e) = ((Wit) g2y, - (Win) ) ), 1 <4 < K.

.....

Let us denote by Vj; [z, u], Wij)[z,u], i = 1,...,k, p=1,...,n, the functions given
by

k
‘/[i ] [Z, u] (t, ZE) = awFiu(ta z, Z(p(t,z)) + Z awyFiu(ta Zz, zgp(t,z)) * ( Uy )go(t,:c) aw(b(ta .’L’),
v=1
k
W[z] [Z7 u](ta .’L‘) = 0,G; (t7 z, Zap(t,a?)) + Z aw,/ Gi (t> z, Z(p(t,ir)) * ( Uy )L,O(t,x) aacd)(tv .’1?)
v=1

The functions (up))et,2) 020(t, ) : D[p(t,z)] = R", v =1,...,k, are defined by

( ga(ta:)—<z U’V_] (t,x) aahd)JtI ’Z Uuy p(t,x) 8:Cn¢j(t 1‘))
j=1

j=1
Let v € X, ¢ = (¢1,...,9%), be given and & < ¢ < a. Write

Glz,u] = [Gyslzul ],y 4,

,J=1,..,m7

Gpilz,u] = (Gil[z,u],...,Gm[z,u]),

where
Gpijlz, ul(t, x) = 0:¢i(t,x) on Ey; (2.5)

and

Gy [z,u](t,z) = 8£1/Ji(ai,g[i] [z](ai, t,z)) + / Wi [z, u](T, i) [2](7,t,x)) dT—

a;

t (2.6)
_ Z / Vil ul (7. gy [2) (7, £, 2)) (7, gpa [ (7. £, ) dir.
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We put i« = 1,...,k in (2.5), (2.6). We consider the system of integral functional
equations consisting of (2.4) and

u = G[z,ul. (2.7)
We first give estimates of solutions to (2.4), (2.7).

Lemma 2.2. Suppose that Assumptions H[p|, Hi[F, G] are satisfied and

1) v eXand kR <c<a,
2) the functions 7 : E, — R¥ @i : E, — Mj,xn, are continuous and they satisfy (2.4),
(2.7).

Then
12l ey <€), Nl mn,) < x(@), t € [K,d],
where
¢(t) = co exp [/B(T) dT:| + /a(§) exp [/ﬁ(T)dT} dg, (2.8)
o o ¢
0 = [+ 0+ Quen) [ ar][1- Qi+ Qe [Bmar] 29

and Q, = max{1, Q}.
Proof. Write )
Ct) = Izl erry, X&) = Nall@nrinn)s  t € [l

It follows from Assumption H,[F,G] and from (2.2), (2.3), (2.5), (2.6) that ((,x)
satisfy the integral inequalities

t

dﬂéw+/hm+ﬁmdﬂwﬂ

K

) <1+ / B [1+Qux(M)2dr, telrd.

The functions (¢, x) satisfy integral equations corresponding to the above inequalities.
This proves the lemma. O

In the next part of the paper we assume that ¢ € (k,a] is such a small constant
that

Q.1+ Q*cl)/ﬁ(T) dr < 1. (2.10)
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3. EXISTENCE AND UNIQUENESS OF SOLUTIONS
Suppose that ¢ € Xand ¢, x : [, c] = R, are defined by (2.8), (2.9). Givend, h € R,
d > ¢1, h > ca. We denote by Cy ([, d] the class of all z € Cy ¢, such that
2]l t.rry < C(2) for ¢ € [r,c] and |2(¢,2) — 2(t, y)|loo < dflz—y[| on E..
We denote by Cay,.c[x,h], 1 <i <k, the set of all v € Cyy, . satisfying the conditions:
[vlle,rm) < x(2) for t € [a;,c] and [v(t,z) —v(t,y)|| < hllz -yl on E.\ Eo.;.
Write A = ((a), C = x(a) and Q[A] = E x K¢ (pgrr)[A], where
KC(B,Rk)[A] = {w S C(B,Rk) : HU}HB < A}

Assumption H[F,G]. The functions F : Q — My, G :  — R* satisfy Assumption
H,[F,G] and there is v € L([0, a], R;) such that the terms

102 iy (t, 2, w) — 00 Fiiy (t, Z,0) ||

||awF[z] (ta J),’UJ) - awF[l] <t7£a w)||n><k;*7 i= 17 AR ka
and

10.G(t, x,w) = OxG(t, %, 0)kxn, [[OwG(t,2,w) = OwG(t, Z,0)||kxkx

are bounded form above on Q[A] by y(¢)[||z — Z|| + [[w — ©| 5]

Remark 3.1. It is important in our considerations that we assume the Lipschitz
condition for 9,G, 0wG, 0, Fj;), OwF};), 1 <i < k, on the bounded domain Q[A]. It is
clear that there are functional differential systems such that Assumption H[F, G] holds
and the functions 9.G, 0,,/G, 0. F;), OwFjy, 1 < i < k, do not satisfy the Lipschitz
condition with respect to w on €.

Remark 3.2. Note that the theorems on the existence of solutions to hyperbolic
functional differential systems presented in [13,14] are not applicable to (1.1), (1.2).

Lemma 3.3. Suppose that Assumptions H[p], H[F, G| are satisfied and 1, veX, ze
Cy.clC,d], z € Cy [¢, d]. Then the bicharacteristics g [2] (-, ¢, z) and g1 [Z](-, ¢, z) exist
on intervals [a;, 8[z;t,x]| and [a;,0[Z;t, 2] ] such that for & = 0[z;t, z], £ =0[zt, 2] we
have: (€, gji)[2](€,t, x)) € OE,, (£, g13(2](§,t,x)) € OE., where i = 1,...,k and OE. is
the boundary of E.. For each i, 1 < i <k, the solution of (2.1) is unique and we have
the estimates

g 21t 2) — g 21 ) < 1 — exp{c] / 86) d5|}7 (3.1)

and

g [21(7,t, @) = g [2](7 £, ) || < ’/ﬁ(ﬁ) Iz = Zll ¢ rr)

exp {C\ / 8(e) df\} (3:2)

where C =1+ dQ, (t,x), (t,y) € E.\ Eo.i, 1 <i < k.
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Proof. The existence and uniqueness of the solution to (2.1) follows from classical
theorems on Carathéodory solutions of ordinary differential equations. We prove that
the integral inequalities

g1 [21(7, t, @) = gpa [2] (7, t, y) || < w—y|+0‘/6(6) g[i][Z](é“,t,w)—g[z—][Z](&uy)lldS‘

(3.3)
and

lgral21(7, 8, ) — gy [2)(7 8, 2) || <

< C’jﬁ(é) g1 [21(§, t, @) _g[i][é](é,t,x)ﬂdg’ +‘/t5(5) ||Z—2<5,Rk>dg’ (3.4)

are satisfied for 1 < ¢ < k. It follows from (2.1) that

T

galzl(mt, @) =z + / Fii (& 9 [21(6: 1, @), 26 g1y [ (e 1)) ) DE-

t

Note that the functions Zo (g2 t,x)) AN Zp(e i [2](€,t,y)) have different domains.
We need the following construction. Write E, = [[—bo7 a)l X [-b —r,b+ r]. There is
7 : E, — RF such that:

(i) Z is continuous and || Z(t,2) — Z(t,y)||co < d ||z —y|| on E,
(ii) Z(t,x) = z(t,z) for (t,x) € E.

Then we have Zcp(&gm [21(&,t,2)) Zga(&gm ety @ B — R¥. We conclude from As-
sumptions H[p], H[F, G] that

lgal2l(7, 8, ) — gpa[z](m, 1, )| <

<z —yl+
+ / 151 (&, 910 [21(6 1, ), Zo(e g1 206 00))) —
t
— Fli (& 9 [21(6 8, 9)s Zo (6,9 216 10 ) dE| <
< lz —yll+
+| [8©lgale te) - gulle Lol +
t

T Zp(e g2t 2)) — Zio(eng2)etwy) | B] dE
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This gives (3.3). In a similar way we prove (3.4). Then we obtain (3.1), (3.2) from the
Gronwall inequality. O

Write

Po(t) = exp {a / B(S)dé} C1+cQ) / Y€) dé + (hQ +CQo) / B&) de.

K

P() = (14 O)To(t) + [e2 + h(1 + CQ)] exp {é JEG dg},

¢ ¢

() = {C [ s(©)de} [on+ ¢ [ 50,
Assumption H[c]. The constant ¢ € (k,a] is small enough to satisfy (2.10) and
I'(c) < h, T(c) < d.
Theorem 3.4. Suppose that Assumptions H[p], H[F, G|, H[c| are satisfied and ) € X.
Then there exists a solution Z : E, — R¥ of (1.1), (1.2). If € X, ¥ = (¢1,...,¥),
and % : E. — R¥ is a solution of (1.1) with the initial conditions

zi(t,x) = z/;i(t,x) on Ey; for 1<i<k,

then there is ® € L([x,c],Ry) such that

t
”2 - Z”(t,R’“) < [W - 1;”0 €xXp { /‘1)(5) dg}? te [K‘?C]a (35)
where ) )
[l —llo = joax. max{|y;(t,z) — P(t,x)| : (t,x) € Eoi}.

Proof. The proof falls into three parts.
Part 1. We define the sequences {z(™}, {u(™} where

PAULIN SR LGOS (ZY’L), . ,z,(cm)), w™ B, — My,

w(m — [u(m)

17 ]izl,...,k,jzl _____ nvug]n) = (’U’ET)ﬂ cee 7U§ZL)) for 1 S T S k7

in the following way. Write
20(t,2) = i(t,x) on Egu, 20 (t,x) = vi(as, @) on E.\ By,

ufg)(t,x) = 0x%i(t,x) on Ep,, UES) (t,z) = Ox¥i(as,x) on E.\ Ey.i,
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where i = 1,... k. If 20™ : E, — RF and ("™ : E, — M, are already defined,
then ugrﬂ) is a solution of the equation
v=Q"[], (3.6)
where v = (v1,...,v,) and
Q[0 (t, x) = Dutfi(t, x) on Eq, (3.7)
Q[i] [v](t,2) =
= :c,(/)z(ahg[’b][z(m)(al7t7x))+
t
+/W[1] [Z(m)vu(m)](Tv 94 [Z(m)](T,t,x))de (38)

t
n
- Z / ‘/[zu] [Z(m)v u(m)](Ta 9[4) [Z(m)}(Ta t, $)) UH(T7 9[i] [Z(M)](Ta t, Z‘) dr on L. \ Eq ;.
pw=1lg.

We put i = 1,...,k in (3.6)—(3.8). The function z(™*1) is given by
2 (¢ 1) = F[2™)](t, ) on E,. (3.9)

We prove that:
(I,,) the sequences {z(™} and {u(™} are defined on E, and for m > 0 we have

2m) ¢ Cyl¢,d], uEm) € Coy,.c[x, h] for 1 <i<k,

i
(I1,,) there exist the sequences {axz§m)}, 1 <4<k, and for m > 0 we have

8Izz-(m) (t,x) = uEZ]n) (t,z) on Ey,; for 1 <i<k.

We prove (I,,,) and (I1,,) by induction. It is clear that conditions (Iy) and (I1l) are
satisfied. Suppose that (I,,) and (II,,) hold for a given m > 0. We first prove that

there is
u(m+1) : Ec — Mana u(m+1) = I:u('r'n+1)}i:1

ij yoesky j=1,00sn
ug]nﬂ) = (u§§n+1)7 .. ,uEZlH)) for 1 <3<k,
and ug]nﬂ) € Coay,.c[x, h] for 1 <i < k. We claim that
@ff]n) : Coy,.c[Xs h] = Coy, X, bl (3.10)

Suppose that v € Cay,.c[x, h]. It is easily seen that the terms

t
/H W[i] [Z(m)a U(M)](Ta 9[q] (Ta t, x)) - W[i] [Z(m)’ u(m)](T’ L, y)) H dr,

a;
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t
/H ‘/[’L},L] [Z(m)v u(m)](T7 9l4) (Ta t, 1‘)) - ‘/[iu] [Z(m)v u(m)](T7 L, y)) || dr

can be bounded from above by I'y(¢) ||z — y||. This gives

Q" W]t 2) — Q[ W]t v)|| < T(1) 2 =yl on B\ Ens fori=1,....k (3.11)

It follows from Assumptions H[p], H[F, G] that

t
Qi W]t )| < e + / B(r) 1+ Qux(®)]) dr,  (t,2) € Ec\ Eo.,
and consequently

1 0]l gy < X(8) for 1 € [acl. (3.12)

Estimates (3.11), (3.12) and (3.7) imply (3.10).
It follows that there is K € L([x, c|,R1) such that for v, ¥ € Cay, c[x, h] we have

Qi it ) - Qi 19 ”</K ) 0= 8ll(rpny dr,  (t,7) € B\ Eos.

For the above v, v we put

[lv— 0[] _max{||v6||(t7Rn)exp{ /K dT] 1€ [ay, ]}

Then we have

IA

IR (. =) — Q@

[v—ﬁl]/tK(T)eXp {2/K(§)d§}dT<

Sl exp{2 / K(@df}, (t,2) € B\ Bo.i,

IN

and consequently
- 1 -
[l 1 - Q1] < 5llv — 2.

From the Banach fixed point theorem it follows that there exists exactly one ug]nﬂ) €

Coy,.c[X, h] satisfying (3.6). Then u(™*1) is defined on E.. It is easily seen that z(m+1)
given by (3.9) satisfies the conditions

Hz(m+1)||(t,Rk) < C(t)v te [’%7 C],
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120D (8 2) = 2 (8 y)lloo ST [lz —yll on Ee.
It follows from the above estimates and from (2.2) that z(™*1) € Oy .[¢,d] which
completes the proof of (I,,11). Write
Wi(m+1)(t,x,y) = z§m+l)(t,y) - z§m+1)(t,x) - ufgﬂl)(t,x) o(y—x),
(t.2), (t,y) € Ee, 1 <i <k,
and Wt — (Wl(erl),...,W,EmH)). It follows that there is C™*1) € R, such

that

WD (2, y) oo < C Y |l@ —yl?,  (t2), (ty) € Ee. (3.13)
We conclude from (3.13) that there exists the derivatives 8$z£m+1), 1 <i<k, and
&gzi(mﬂ)(t,x) = ug}nﬂ)(t,x) on E.. This proves (I1,,41).
Part II. We prove that the sequences {z(™} and {u("™} are uniformly convergent
on E.. Write

Z0(t) = |20 =2V ey, U (@) = ™ = a D ag s

where t € [k,c], m > 1. We conclude from Assumptions H[p], H[F, G| and from
(3.6)—(3.9) that there are Ky, K1, K5 € L([x, ¢], R4) such that
¢
Z0m (1) < / Ko(r) 20 ()dr (3.14)

and
) < [ K20 + U @] dr+ [ KU dr - (315)

where m > 1, t € [k, ¢]. From (3.15) it may be concluded that

UmH () < /Kl(T) [Z(M)(T) + U(m)(7'>] dr exp { /KQ(T) dT} (3.16)

where m > 1, ¢ € [, ¢]. It follows from (3.14), (3.16) that there is K € L([x, c],R4)
such that

Z0m D () U (1) < / K(r) [20(r)+ U™ ()] dr, te€ [k,c],m>1. (3.17)

Write V™) (t) = Z0)(t) + U™ (t), t € [k, c], m > 1, and
t

[V = max {v<m> (t)esp { - 2/K(T) dr}itels c]}.

K
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We conclude from (3.17) that

[\V(mH)H < [\V(m)H for m > 1.

N | =

There is C; € R, such that [[V)|] < Cy. From the above recurrent inequality we
conclude that

lim [[V™|] =0

m—r oo

and consequently there are
z:E, — R", z=(z1,...

U:FE.— Meygn, 4= [’aijjlizl R A R

such that

Z(t,x) = mlgnOO Mt 1), u(t,x) = n}gnoo u™(t,z) uniformly on E..

We conclude from (I,,), (I1,,) that there exist the derivatives 0,%;, 1 < i < k, and
0:Zi(t,x) = up(t,r) on E. for 1 <4 < k. It follows from (3.9) that

t
Z; (ta g[l] [2] (tv a;, l’)) = wz (aia (E) + / Gz (7—7 g[’L] [2](7—» a;, l’)7 égp(r,g[i] [2](7‘,(1,;,1))) dr

aq

and zZ(t,z) = ¥;(t,x) on Epy, 1 < i < k. It is easily seen that Zz is a solution
1.

o (1.1), (1.2).

Part III. We prove (3.5). It follows that the function z — Z satisfies the integral
inequality

t

2= Elsey < [0 =Bl + [ ®() 12 = Zlrasydr, 2 fovel,

K

where

O(7) = 5(7){1 + exp [C/B(f) df} [cl +C’/ﬁ(§) df} }
It follows from the Gronwall inequality that (3.5) is satisfied with the above given ®.

This completes the proof of the theorem. O

Remark 3.5. Note that results presented in [4, 10, 22] are not applicable to our
generalized Cauchy problem.



232 Zdzistaw Kamont

4. DIFFERENTIABILITY OF SOLUTIONS

Given ¢ = (cp,c1,¢2) > (0,0,0). In this part of the paper we denote by X the set of
all v = (¢1, ..., 1) such that for each 7, 1 < i < k we have:

(i) ¥ € C(Ey4,R), the derivatives d,¢; = (Ouy i, ..., 04, ;) exist on Ey; and
0z € C(Ep.i, R™),
(ii) the estimates
|¢i(t7‘r)| < Co, Hamwz(tﬂ‘r)u < ¢,

[0xti(t, 2) — Outbi(t, y)|| < c2llz =yl
are satisfied on Ey ;.

Suppose the Assumptions H[p], H[F, G|, H[c| are satisfied and ¢ € X. Let us
denote by z(-,1) the solution of (1.1), (1.2). Let gp;j[2(-,%)], 1 < i < k, denote the
i-th bicharacteristic of (1.1) corresponding to z(-,v). Write

Yei={lntx): t(x)eE: a;<t<c¢, a; <7<t} i=1,....k

We will use the symbols Z = (Z1,...,Z;) and A = (Aq,...,Ax) to denote the opera-
tors defined on X in the following way:

E[Y] = 2(,v), Mi[Y] =gpz(-v), i=1,... k.

Then we have: = : X — C(E.,RF) and A; : X = C(X.;,R") for 1 <i < k.

We prove that for each ¢ € X there exist the Fréchet derivatives 0Z;[1)], OA;[¢)]
of Z; and A; at the point ¢ € X, 1 < ¢ < k. Moreover, if ¢,9 € X then the
functions (0= [¢]Y,...,0Z[¢]9) and IA;[¢]9, 1 < i < k, are solutions of linear
integral functional systems generated by (1.1), (1.2).

The following notations will be needed throughout the paper. For
Y € CL(B,Myy), U € CL(B,Myx»), Y € CL(B,R*), w € C(B,R¥), ¢ € R",
where

Y =[] U= [Uy]

i=1,.n, j=1,....k’ i=1,....k, j=1,...,n’

Y:(Yl,...,yk), 12/:(12)1,...711)k)T, q:(ql,...,qn)T,

we write

Y

Y

k k T
_ (Zyljwj,...,zymwj) ,
j=1 j=1

iy

~h

<

£

|
]~

=2

K2

1

n n T
UqZ ZUquj"“’ZUquj> .
j=1 7j=1

Let z = (21,...,2x) T and Ap = (A, ..., Ain), 1 <i < k, denote unknown functions
of the variables (¢, ) and (7, t, z) respectively. Suppose that ¢, ¥ € X. We construct a

—
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linear system of integral functional equations for 9Z;[1]9, OA;[¢]Y, 1 < i < k. Write
u('a 77[1) = 3962(,1/1), and

U(Z) (T7 iz, A[z]) = (’LL(, 1/))) o (7,914 [2( )] (1,¢,x)) [8x¢(77 9[i] [Z(v 1/))] (Ta t, x))A[z] (T, t, 1‘)} )

Oi(1,t,z) = (7—, g[4] [2(, )7, t, ), (2(- 1!]))@0(7'79[1'] [Z('W)](Tvt»x)))’

where 1 < ¢ < k. It follows from Theorem 3.4 that
Z(7Z/J) . Ec — Rka u(aw) : Ec — kana g[z] [Z(aw)] : Ec.i — Rna 1 S ) S kv
are known functions. We consider the system of integral functional equations

zi(t, @) = Has, g2, )] (as, t, 2))+
+ (%%(ai,g[i] [Z(v 1/’)](% t, I)) 0 A[1] (ai7 t :C)+

t

a;

t
+ / OwGi(0i(&, 1, @) © Zp(e g [2( )] (E,t,2)) A+

[£2

t

+ / 0uG(0:(€.1,)) 0 UD (€, 1,2, Ayy) de

with the initial conditions
zi(t,x) = ¥;(t,x) on Ep; (4.2)

and

t
+ / 0w F)(0:(&, 1, 7)) 2o, g1 12 ()] (6 ) A6+ (4.3)
t

+ / OwFy (60:(¢.1,2)) UD(€, 1,2, Agy) dE.
t

We put i =1,...,k in (4.1)—(4.3).
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We formulate the main theorem of the paper.
Theorem 4.1. If Assumptions H[p], H[F, G|, H[c] are satisfied and ¢ € X, then:
(i) there exist the Fréchet derivatives 0Z;[v], ON;[Y], 1 < i <k,
(ii) if 9 € X then the functions OZ;[y]9, ON;[¥]9, 1 <i <k, satisfy (4.1)—(4.3).

Proof. The proof will be divided into three parts.
Part 1. We prove that there exists exactly one solution (Z, A[l]’ .. ,A[k]) of system
(4.1)~(4.3) and Z € Cy.c, Ay € C(Ses, R?) for 1 < i < k.

Suppose that z € Cy . is given. Let us consider system (4.3) with the above fixed z.
It follows that for each 7 € {1,...,k} there exists exactly one solution A;[z] of (4.3)
and A [z] € C(E..;,R™). Moreover, there is v, € ([, |, R;) such that

t

1A@wz](r,t, 2) = Al (r, ¢, 2)]| < /%(5) Iz = 2l (e, rx) d€, (4.4)

T

where (7,t,x) € ¥.,; and z, Z € Cy... Denote F[z] = (F[z], ..., Fx[2]), where

Fz[z] = ﬁ(aivg[i] [Z(’ w)](aht"r))"i_
+ Ozi(as, gl4) [z(-,¥))(ai, t, x)) 0 A[i] 2] (ai, t, )+

t
+ / 0,Gi(0:(6.1, 7)) o Ay [2](€.t.x) de+

t
- / OwGi(0i (&1, %)) © 2 g [5(9)) (€ t2)) DE+

a;

¢
for (t,z) € E.\ Eo; and F;[2](t, ) = ¥;(t, ) on Eg;. Weput i = 1,..., k in the above

definitions. We consider the integral functional equation

z =T[z]. (4.5)

It follows from Assumption H[F,G] and from (4.4) that there is 79 € L([x,c],R4)
such that

t
IF[2](t, z) — F[Z](t, 2)] 0o < /70(5) llz = 2l reyds, (t,7) € Ee, k<t <c,

where z, Z € Cy. For the above z, Z we put

t

I — 21 = manc{ = SNy exp | 2 [rol€)de] = ee .

K
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Then we have

([ F2] — Flz] )] < = {1z — [

[\)

From the Banach fixed point theorem it follows that there exists exactly one solution
Z € Oy of (4.5). Then (Z,Ay[Z],. .., Apy[Z]) is the desired solution of (4.1)-(4.3).

Part II. Write

() = é[z(t, x, Y+ s9) — z(¢t, x, w)]T

AR (rt,2) = %[gm 2, + s9)](7.t,2) — gpg[=(, )| (r, £ 2)]

where s € R, s #0, ¢ =1,...,k. There is g > 0 such that for s € (—£g,&9), s # 0,
we have: ¢ + s € X.
We write integral functional equations for (z(s) A[I] ye A( ) More precisely,

we prove that the above functions are approximate solutlons to (4 1)—(4.3). We use
the Hadamard mean value theorem. We need the following intermediate points:

PZ(S)(/\a fv 2 Z‘) = (57 (1 - /\)g[z] [Z(’ 1?)}(57 2 Z‘) + )‘g[i] [Z(a P+ Sﬁ)}(fa 2 J}),

(1= Nt et + MG+ 59 gl gt miEne )

QYN &t x) = (1= M€, g [2( 0IE b)) + A&, g [2( 0 + sD)](E, 1, 2))),

SE €t x) = (€, (1 — Ngp[2(, )€, t,2) + Agpy[2(, 0 + s (€, 1, x)),

where A € [0,1] and s = 1,..., k. Write

U0 (7,12, Af) =

1
/ Q(s>()\”z)d/\/8$qb 7',,51(S (A, 7, J:))d/\A (T,t,ac),
0
where the function

1
/(U(',¢))Q§s>(A7T7t,x) d\: BQYW (A 7.t 2)] = Myxn
0
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is defined by

1 1
/ Q()\STtQZd)\ Ty :/ As‘rt:v)(Tay)d)‘-
0 0

It follows from Assumption H[F, G] and from the Hadamard mean value theorem that

zi(s)(t,x) _ 19(%9 [2(, ¥ + s?)](as, t,x))+

+ /ami(sfs)u,ai,t,z)) dXo Al (ai,t,x)+

+

0.Gi(PLV (N &1, 7)) dX o AlY (6,1, ) dg+

BwGi(PP (N € t,2)) dA o (2

)w(&gm [z(-,p4+9)](&,t,2)) de+

0uGi(PY (N &, 1,2)0dN o U (¢, 8,2, AY) dg on E.\ By,

_|_

+
E\ﬁ E\ﬁ 5.\& )
St O O—_

29 (t,x) =9(t,z) on Ep;

?

and
T 1
AP (7,t,2) = / / 0 Flay (P (N 6,1, ) dA AL (6,1, ) dé+
t 0

+//awF[Zl( TAEE ) AN () e g pranie e

t 0
T 1

+//awFM( (A{tm))dAU(“)(gtxA yd¢ on E,.

t 0

It is clear that integral functional equations (4.1)—(4.3) are generated by the above
relations.
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Part ITII. We prove that

liH(l) (¢, 2) = Z(t,z) uniformly on E,,
s—

lim A% 7 t,z) = App(r,t,2) uniformly on ., i =1,...,k.
s—0 ] (1]

It follows from (4.1)—(4.3) that
El—(t,(t) - ZES)(tvx) -

= xwi(aivg[i] [Z('vw)}(ai’tvx) o [A[z] (aivt’ :C) - AE:])(ai’tvx)]+

t
+ /893G'L(02(§7t7x)) o [A[’L] (f,t,.’t) - AE:])(E,LI')]"‘

t
+ /87UG1(91(£’t7x))<> [ng(g,g[i][z(~,1{1)}(£,t,$))7

= e g evramie s ] dét
t

+ / OwGi(0:(&,t, ) 0 UD(E 1,2, Ay — AL)) dE + Ai(s, t, )

(€23

and

Ap (Tt x) — Af;i) (r,t,z) =

t
+ /ame (0:(&:,2)) © [Zo(e.gp =o(E i) —
t

= (D)ot gzCvrsme ] dt

+ /awF[l](ez(g?tax) © U(’L) (f,tl’, A[z] - AEZS])) dg + Bi(SaTata (L‘)7
t

(4.8)

(4.9)
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where

A;i(s,t,xz) =

- 19 (alv ﬂz(,d;)}(a“t,x) - ﬁz(az;g[z] [Z(ﬂ/’ + Sﬂ)](aivta .T)+

+ / [0ut0s(ai, g [0 )] (0,1, 2)) = Quthil ST (N, @i, t, 7)) dA o AL (as, 8, 2)+
« [
/ (4.10)
+ 0;(&,t,x))—
/ !

— 8,Gi(PP (N & t,2))] dAo () (900 (= ot s (€ o)) D+

0:(&,1, 7)) — 0.Gi (P (0, & 1, 0))] dh o A+

. O\H

t

n / [0uGi(0:(6,t,2)) o UD (€, 2, AY))—

a;

1

- [ BuGUPL € )N o U (€ b A e
0

and

Bi(svTv t,SU) =
T 1

— [ [[0cFuoite ) — 0.5y (P& )] d A (6t 0) e+
t

+

Tt~—. °

1
/a Fry(0:(6,t,2))
0

(4.11)
— OuFlay (P (N 6,1, 2))] dA(21)) (e gy (2o s0)) (e 1)) dE+

+ [ 0uFi(0:(6, t.a)UO (& 12, A -

ﬁ\ﬂ

/a Flg (P (6,1, 2)dAU ) (&, t, 2, AF)) | de.
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We put ¢« = 1,...,k in (4.8)—(4.11) It follows from (4.9), (4.11) that there are
fo € C([0,1],R) and 79, 11 € L([x, ¢], R4) such that

||A[i](7'7t,$) — AE])(T t,x)| < fo(s ’/70 N Z(S)H(5 Ry dE[+

(r,t,x) € Ec,

+| [ @18t - A o)

and fo(0) = 0. We conclude from the Gronwall inequality that

||Am(7,t,x)—Af (1, t,2)|| < [fo ’/70 ) |1E—2C )||(5 ri) dE

el )

(4.12
From (4.8), (4.10), (4.12) we deduce that there are f € C([0,1],Ry) and ¥ €
L([~, c],R4) such that

t

12— 2 ar) < F(s) + / HEIE — 2 eqy dE, ¢ € [,

K

and f(0) = 0. Then we have

t

12— gz < £(5) exp{ J&G ds}, L€l (413)

We conclude from (4.12), (4.13) that relations (4.6), (4.7) hold. This completes the
proof of the theorem. O

We give comments on particular cases of problem (1.1), (1.2). Suppose that there
is M = (Mj, ..., M,) € R such that M(t) = Mt for t € [O a]. Then F is the classical
Haar pyramid. Suppose that k>0,0<ky<kand h < Mkg, h = (h1,...,hn) €RY.
Consider the functions

~ & ~ .
F:ExR _>Mk:><n; F:[Flj]zzl ____ k,j=1,....n F[Z]Z<FllaaF’Ln)a ISZSka

Write

h h
F['L] (t,x,w) - F[z] <t,£L', / w(fﬁ()a y) dy)a Gi(taxa w) - éz <t,$, / w(fﬂ()vy) dy>a
—h —h
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where (t,z,w) € Q and a; <t < a, and

h h
Fa (b, w) = iy (t,x, [ w0y dy), Gtz w) = Gy (t,x, [ oy dy),

—h —h

where (t,z,w) € Q and 0 <t < a;. We put ¢ = 1,...,k in the above definitions. Note
that the i-th equation in (1.1) is considered for a; < ¢ < a and (¢,z) € E.

Suppose that ¢(t,z) = (¢t,z) for (¢t,z) € E. Then (1.1) reduces to the differential
integral system

x+h

atzi(ta :ZJ) + F[z] <tama / Z(t - ’i07y) dy> © azzi(ta I) =

z—h
z+h

zéi<t,x,/z(t—f£o,y)dy), i=1,....k.

x—h

(4.14)

It follows easily that Theorem 4.1 can be applied to (4.14), (1.2).
For the above F' and G we put

F(t,z,w) = F(t, z,w(0,0p,)), G(t,z,w)= é(t,x,w(0,0[n])).
Then (1.1) is a system of quasilinear differential equations with deviated variables
atzi(t7 Z‘) + F[z] (t7 Zz, Z((P(t7 J?)) © 8le(t7 l‘) = éz(ta Z, Z(QO(t, l‘)), i = 1a RS k. (415)

It is clear that Theorem 4.1 can be applied to (4.15), (1.2).
Let us consider the quasilinear system

Orzi(t,x) + Fly (8, 2, 2(1,0)) © Orzi(t, ) = Gi(t, 2, 2(10)),  1=1,...,k, (4.16)

which is a particular case of (1.1). The functional differential problem consisting of
(4.16) and (1.2) is a generalized Cauchy problem.

This is the following motivation for investigation of (1.1), (1.2) instead of (4.16),
(1.2). Quasilinear systems with deviated variables are obtained from (4.16) in the
following way. Write

F(t, z,w) P:“(t, z,wpt, z) — (t,2))), (4.17)

G(t,z,w) = G(t, z,w(p(t,x) — (¢, ))).

Then system (4.16) is equivalent to (4.15). Note that the functions F' and G given by
(4.17) do not satisfy Assumption H[F, G]. More precisely, the derivatives d,G, 0, FJ;,
1 <i <k, do not exist on €.

With the above motivation we have considered problem (1.1), (1.2).
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