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Abstract. A generalized Cauchy problem for quasilinear hyperbolic functional differential
systems is considered. A theorem on the local existence of weak solutions is proved. The
initial problem is transformed into a system of functional integral equations for an unknown
function and for their partial derivatives with respect to spatial variables. The existence of
solutions for this system is proved by using a method of successive approximations. We show
a theorem on the differentiability of solutions with respect to initial functions which is the
main result of the paper.
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1. INTRODUCTION

For any metric space U and V we denote by C(U, V ) the class of all continuous
functions from U into V . We use vectorial inequalities with the understanding that
the same inequalities hold between their corresponding components. Suppose that
M ∈ C([0, a],Rn+), a > 0, R+ = [0,+∞), is nondecreasing and M(0) = 0[n], where
0[n] = (0, . . . , 0) ∈ Rn. Let E be a generalized Haar pyramid

E = {(t, x) ∈ R1+n : t ∈ [0, a], −b+M(t) ≤ x ≤ b−M(t)},

where b ∈ Rn and b > M(a). Write E0 = [−b0, 0]× [−b, b], where b0 ∈ R+ and

E0.i =
(
E0 ∪ E

)
∩
(
[−b0, ai]× Rn

)
, i = 1, . . . , k,

where 0 ≤ ai < a for 1 ≤ i ≤ k. For (t, x) ∈ E define

D[t, x] = {(τ, y) ∈ R1+n : τ ≤ 0, (t+ τ, x+ y) ∈ E0 ∪ E}.
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Set
D0[t, x] = [−b0 − t,−t]× [−b− x, b− x],

D?[t, x] = {(τ, y) : −t ≤ τ ≤ 0, −b− x+M(τ + t) ≤ y ≤ b− x−M(τ + t)}.
Then D[t, x] = D0[t, x] ∪ D?[t, x) for (t, x) ∈ E. Write r0 = −b0 − a, r = 2b and
B = [−r0, 0] × [−r, r]. Then D[t, x] ⊂ B for (t, x) ∈ E. Given z : E0 ∪ E → Rk and
(t, x) ∈ E, define z(t,x) : D[t, x]→ Rk by

z(t,x)(τ, y) = z(t+ τ, x+ y), (τ, y) ∈ D[t, x].

Then z(t,x) is the restriction of z to
(
E0 ∪E

)
∩
(
[−b0, t]× Rn

)
and this restriction is

shifted to D[t, x].
Suppose that φ0 : [0, a] → R and φ = (φ1, . . . , φn) : E → Rn are given functions

such that 0 ≤ φ0(t) ≤ t and (φ0(t), φ(t, x)) ∈ E for (t, x) ∈ E. Write ϕ(t, x) =
(φ0(t), φ(t, x)) for (t, x) ∈ E.

Let Mk×n denote the set of all k × n matrices with real elements. If X ∈ Mk×n
then XT is the transpose matrix. The scalar product in Rn is denoted by “◦”. Put
Ω = E × C(B,Rk) and suppose that

F : Ω→Mk×n, F =
[
Fij
]
i=1,...,k,j=1,...,n

, G : Ω→ Rk, G = (G1, . . . , Gk),

are given functions of the variables (t, x, w), x = (x1, . . . , xn), w = (w1, . . . , wk). For
the above F we put F[i] = (Fi1, . . . , Fin) where i = 1, . . . , k.

We will say that F and G satisfy condition (V ) if for each (t, x) ∈ E and for w, w̄ ∈
C(B,Rk) such that w(τ, y) = w̄(τ, y) for (τ, y) ∈ D[ϕ(t, x)] we have F (t, x, w) =
F (t, x, w̄) and G(t, x, w) = G(t, x, w̄). The condition (V ) means that the values of F
and G at the point (t, x, w) ∈ Ω depend on (t, x) ∈ E and on the restriction of w to
the set D[ϕ(t, x)] only. Let us denote by z = (z1, . . . , zk) an unknown function of the
variables (t, x). Given ψi : E0.i → R, i = 1, . . . , k, we consider the system of functional
differential equations

∂tzi(t, x) + F[i](t, x, zϕ(t,x)) ◦ ∂xzi(t, x) = Gi(t, x, zϕ(t,x)), i = 1, . . . , k, (1.1)

with the initial conditions

zi(t, x) = ψi(t, x) on E0.i, i = 1, . . . , k, (1.2)

where ∂xzi = (∂x1
zi, . . . , ∂xnzi), 1 ≤ i ≤ k. We assume that F and G satisfy the

condition (V ). System (1.1) with initial conditions (1.2) is called a generalized Cauchy
problem. If ai = 0 for i = 1, . . . , k then (1.1), (1.2) reduces to the classical Cauchy
problem.

Write κ = min{ai : 1 ≤ i ≤ k}, κ̃ = max{ai : 1 ≤ i ≤ k} and

Et = (E0 ∪ E) ∩ ([−b0, t]× Rn), St = [−b+M(t), b−M(t)], 0 ≤ t ≤ a,

Ic.i[x] = {t ∈ [ai, c] : −b+M(t) ≤ x ≤ b−M(t)}, i = 1, . . . , k,

I[x] = {t ∈ [0, a] : −b+M(t) ≤ x ≤ b−M(t)},
where x ∈ [−b, b] and κ̃ < c ≤ a. We consider weak solutions of initial problems.
A function z̃ : Ec → Rk, z̃ = (z̃1, . . . , z̃k), where ã < c ≤ a, is a solution of (1.1), (1.2)
provides that:
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(i) z̃ is continuous and the derivatives ∂xz̃i = (∂x1
z̃i, . . . , ∂xn z̃i) exist on

E ∩ ([ai, c]× Rn) for 1 ≤ i ≤ k,
(ii) for each i, 1 ≤ i ≤ k, and x ∈ [−b, b], the function z̃i(·, x) : Ic.i[x] → R is

absolutely continuous,
(iii) for each x ∈ [−b, b] and for 1 ≤ i ≤ k, the i-th equation in (1.1) is satisfied for

almost all t ∈ Ic.i[x] and conditions (1.2) hold.

The following problems are considered in the paper. Under natural assumptions on
given functions we prove that there exists exactly one solution to (1.1), (1.2) defined
on Ec and we give an estimate of the constant c ∈ (κ̃, a].

Denote by X the class of all ψ = (ψ1, . . . , ψk), ψi : E0.i → R for 1 ≤ i ≤ k, such
that there exists exactly one solution Ξ[ψ] = (Ξ1[ψ], . . . ,Ξk[ψ]) to (1.1), (1.2). We give
a construction of the space X. Denote by Λi[ψ], 1 ≤ i ≤ k, the i-th bicharacteristic
of (1.1) corresponding to Ξ[ψ]. We prove that for each ψ ∈ X there exists the Fréchet
derivatives ∂Ξi[ψ] and ∂Λi[ψ] of Ξi and Λi at the point ψ ∈ X, 1 ≤ i ≤ k. Moreover,
if ψ, ϑ ∈ X then the functions

(
∂Ξ1[ψ]ϑ, . . . , ∂Ξk[ψ]ϑ

)
and ∂Λi[ψ]ϑ, 1 ≤ i ≤ k, are

solutions of a linear integral functional system generated by (1.1), (1.2).
Numerous papers were published concerning various problems for first order par-

tial functional differential equations or systems. The following questions have been
considered: functional differential inequalities generated by initial or mixed problems
and their applications, uniqueness of solutions and continuous dependence on ini-
tial or initial boundary conditions, existence theory of classical or weak solutions of
equations or finite systems with initial or initial boundary conditions, approximate
solutions of functional differential problems. It is not our aim to show a full review
of papers concerning the above problems. We shall mention only those which contain
such reviews. They are [1–3,5–9,12,16,18–21,23] and the monograph [15].

In the paper we start investigations of the differentiability of solutions with re-
spect to initial functions. The monographs [11,17] contain results on the regularity of
solutions of initial problems for ordinary functional differential equations. Differential
systems with deviated variables and differential integral problems are particular cases
of systems considered here.

2. INTEGRAL FUNCTIONAL EQUATIONS

For x ∈ Rn, p ∈ Rk, X ∈ Mk×n, where x = (x1, . . . , xn), p = (p1, . . . , pk),
X =

[
xij
]
i=1,...,k,j=1,...,n

, we define the norms

‖x‖ =

n∑
i=1

|xi|, ‖p‖∞ = max{|pi| : 1 ≤ i ≤ k},

‖X‖k×n = max

{ n∑
j=1

|xij | : 1 ≤ i ≤ k
}
.
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For z ∈ C(E0 ∪ E,Rk), v ∈ C(E0 ∪ E,Rn), u ∈ C(E0 ∪ E,Mk×n), we define the
seminorms

‖z‖(t,Rk) = max{‖z(τ, y)‖∞ : (τ, y) ∈ Et}, ‖v‖(t,Rn) = max{‖v(τ, y)‖ : (τ, y) ∈ Et},

‖u‖(t,Mk×n) = max{‖u(τ, y)‖k×n : (τ, y) ∈ Et},

where t ∈ [0, a]. The norm in the space C(B,Rk) is given by

‖w‖B = max{‖w(τ, y)‖∞ : (τ, y) ∈ B}.

We denote by CL(B,R) the set of all linear and continuous functions defined on
C(B,R) and taking values in R. Let ‖ · ‖? be the norm in CL(B,R) generated by
the maximum norm in the space C(B,R). Let CL(B,Mk×n) be the class of all Y =[
Yij
]
i=1,...,k,j=1,...,n

such that Yij ∈ CL(B,R), i = 1, . . . , k, j = 1, . . . , n. For Y ∈
CL(B,Mk×n) we put

‖Y ‖k×n;? = max

{ n∑
j=1

‖Yij‖? : 1 ≤ i ≤ k
}
.

In a similar way we define the space CL(B,Rk). Let L([τ, t],Mk×n), [τ, t] ⊂ R, denote
the class of all integrable functions Ψ : [τ, t]→Mk×n. In a similar way we define the
space L([τ, t],Rk+).

We will say that F : Ω → Mk×n satisfies the Carathéodory conditions if
F (·, x, w) ∈ L(I[x],Mk×n), where (x,w) ∈ [−b, b] × C(B,Rk) and F (t, ·) : St ×
C(B,Rk)→Mk×n is continuous for t ∈ [0, a]. In a similar way we define Carathéodory
conditions for G : Ω→ Rk and for the derivatives

∂xG =
[
∂xνGµ

]
µ=1,...,k,ν=1,...,n

, ∂xF[i] =
[
∂xνFiµ

]
µ,ν=1,...,n

, i = 1, . . . , k.

Suppose that there exist the Fréchet derivatives

∂wF[i](P ) =
[
∂wνFiµ(P )

]
µ=1,...,n,ν=1,...,k

P = (t, x, w) ∈ Ω, 1 ≤ i ≤ k,

and ∂wF[i](P ) ∈ CL(B,Mn×k) for P ∈ Ω, 1 ≤ i ≤ k. We will say that ∂wF[i],
1 ≤ i ≤ k, satisfy the Carathéodory conditions if the functions ∂wF[i](t, ·) : St ×
C(B,Rk) → CL(B,Mn×k), 1 ≤ i ≤ k, are continuous for t ∈ [0, a] and for (x,w) ∈
[−b, b]× C(B,Rk), w̃ ∈ C(B,R) we have

∂wF[i](·, x, w)w̃ ∈ L(I[x],Mn×k), i = 1, . . . , k,

where
∂wF[i](t, x, w)w̃ =

[
∂wνFiµ(t, x, w)w̃

]
µ=1,...,n,ν=1,...,k

.

In a similar way we define Carathéodory conditions for the Fréchet derivatives

∂wG(P ) =
[
∂wνGµ(P )

]
µ,ν=1,...,k

, P ∈ Ω.
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Assumption H0[F ]. The function F : Ω→Mk×n satisfies the condition (V ) and

1) the Carathéodory conditions for F hold and there is L ∈ L([0, a],Rn+),
L = (L1, . . . , Ln), such that(

|Fi1(t, x, w)|, . . . , |Lin(t, x, w)|
)
≤ L(t) on Ω for 1 ≤ i ≤ k,

2) for t ∈ [0, a] we have

M(t) =

t∫
0

L(τ)dτ.

Assumption H[ϕ]. The functions φ0 : [0, a]→ R, φ : E → Rn are continuous and

1) 0 ≤ φ0(t) ≤ t for t ∈ [0, a] and ϕ(t, x) = (φ0(t), φ(t, x)) ∈ E for (t, x) ∈ E,
2) there exist the derivatives

∂xφ(t, x) =
[
∂xνφµ(t, x)

]
µ,ν=1,...,n

and ∂xφ ∈ C(E,Mn×n),
3) the constant Q ≥ 0 is defined by

Q = max{‖∂xφ(t, x)‖n×n : (t, x) ∈ E}

and there is Q0 ∈ R+ such that

‖∂xφ(t, x)− ∂xφ(t, y)‖n×n ≤ Q0‖x− y‖, (t, x), (t, y) ∈ E.

Given c̄ = (c0, c1, c2) ∈ R3
+, we denote by X the set of all ψ = (ψ1, . . . , ψk) such

that for each i, 1 ≤ i ≤ k we have:

(i) ψi ∈ C(E0.i,R), the derivatives ∂xψi = (∂x1ψi, . . . , ∂xnψi) exist on E0.i and
∂xψi ∈ C(E0.i,Rn),

(ii) the estimates
|ψi(t, x)| ≤ c0, ‖∂xψi(t, x)‖ ≤ c1,

‖∂xψi(t, x)− ∂xψi(t, y)‖ ≤ c2‖x− y‖

are satisfied on E0.i.

Let ψ ∈ X, ψ = (ψ1, . . . , ψk), be given and κ̃ < c ≤ a. We denote by Cψ.c the
class of all z ∈ C(Ec,Rk), z = (z1, . . . , zk), such that zi(t, x) = ψi(t, x) on E0.i for
1 ≤ i ≤ k. For the above ψ and c ∈ (κ̃, a] we denote by C∂ψi.c, 1 ≤ i ≤ k, the class of
all v ∈ C(Ec,Rn) such that v(t, x) = ∂xψi(t, x) on E0.i.

Suppose that Assumption H[ϕ], H0[F ] are satisfied and ψ ∈ X, z ∈ Cψ.c,
κ̃ < c ≤ a. Let us denote by g[i][z](·, t, x) the solution of the Cauchy problem

η′(τ) = F[i](τ, η(τ), zϕ(τ,η(τ))), η(t) = x, (2.1)

where (t, x) ∈ Ec and ai < t ≤ c. The function g[i][z](·, t, x) is the i-th bicharactersitic
of (1.1) corresponding to z.
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Lemma 2.1. If Assumptions H[ϕ], H0[F ] are satisfied and ψ ∈ X, z ∈ Cψ.c,
κ̃ < c ≤ a, 1 ≤ i ≤ k, then the bicharacteristic g[i][z](·, t, x) is defined on [ai, t].

Proof. The local existence of a solution to (2.1) follows from classical theorems on
Carathéodory solutions for ordinary differential equations. Suppose that [t0, t] is the
interval on which the bicharacteristic g[i][z](·, t, x) is defined. Then

−L(τ) ≤ d

dτ
g[i][z](τ, t, x) ≤ L(τ) for τ ∈ [t0, t]

and consequently

−b+M(τ) ≤ g[i][z](τ, t, x) ≤ b−M(τ) for τ ∈ [t0, t].

Then the bicharacteristic g[i][z](·, t, x) is defined on [ai, t]. This is the desired conclu-
sion.

Write F[z] = (F1[z], . . . ,Fk[z]), where

Fi[z](t, x) = ψi(t, x) on E0.i, (2.2)

and

Fi[z](t, x) = ψi(ai, g[i][z](ai, t, x))+

+

t∫
ai

Giτ, g[i][z](τ, t, x), zϕ(τ,g[i][z](τ,t,x))) dτ on Ec \ E0.i,
(2.3)

where i = 1, . . . , k. We consider the functional integral equation

z = F[z]. (2.4)

It is easy to give sufficient conditions for the existence and uniqueness of a continuous
solution z̃ : Ec → Rk, z̃ = (z̃1, . . . , z̃k), of (2.4). We consider solutions to a functional
differential problem (1.1), (1.2). Then the main question in our investigations is to
prove that there exist the derivatives ∂tz̃i, ∂xz̃i = (∂x1 z̃i, . . . , ∂xn z̃i) on Ec \ E0.i for
1 ≤ i ≤ k. We show that under natural assumptions on given functions there exists
ũ : Ec → Mk×n, ũ =

[
ũij
]
i=1,...,k j=1,...,n

such that ũ[i] = (ũi1, . . . , ũin) ∈ C∂ψi.c and
ũ[i] = ∂xz̃i on Ec \ E0.i, where 1 ≤ i ≤ k.
Assumption H?[F,G]. The function G : Ω→ Rk satisfies condition (V ) and

1) the Carathéodory conditions for G hold and there is α ∈ L([0, a],R+) such that
‖G(t, x, θ)‖∞ ≤ α(t) on E, where θ ∈ C(B,Rk) is given by θ(τ, y) = 0[k] on B and
0[k] = (0, . . . , 0) ∈ Rk,

2) Assumption H0[F ] is satisfied and there exist the derivatives

∂xG =
[
∂xνGµ

]
µ=1,...,k, ν=1,...,n

, ∂xF[i] =
[
∂xνFiµ

]
µ, ν=1,...,n

and the functions ∂xG , ∂xF[i], i = 1, . . . , k, satisfy the Carathéodory conditions,
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3) for P = (t, x, w) ∈ Ω there exist the Fréchet derivatives

∂wG(P ) =
[
∂wνGµ(P )

]
µ, ν=1,...,k

, ∂wF[i](P ) =
[
∂wνFi µ(P )

]
µ=1,...,n, ν=1,...,k

and the functions ∂wG, ∂wF[i], i = 1, . . . , k, satisfy the Carathéodory conditions,
4) there is β ∈ L([0, a],R+) such that

‖∂xG(t, x, w)‖k×n, ‖∂wG(t, x, w)‖k×k;? ≤ β(t) on Ω

and

‖∂xF[i](t, x, w)‖n×n, ‖∂wF[i](t, x, w)‖n×k;? ≤ β(t) on Ω for i = 1, . . . , k.

For Θ ∈ CL(B,R) and w̄ ∈ C(B,Rn), w̄ = (w̄1, . . . , w̄n) we define Θ ? w̄ =
(Θ w̄1, . . . ,Θ w̄n). For a function u : Ec → Mk×n, u =

[
uij
]
i=1,...,k, j=1,...,n

we put
u[i] = (ui1, . . . , uin) and

u(t,x) =
[
(uij)(t,x)

]
i=1,...,k, j=1,...,n

, (u[i] )(t,x) = ( (ui1)(t,x), . . . , (uin)(t,x) ), 1 ≤ i ≤ k.

Let us denote by V[i µ][z, u], W[i][z, u], i = 1, . . . , k, µ = 1, . . . , n, the functions given
by

V[i µ][z, u](t, x) = ∂xFi µ(t, x, zϕ(t,x)) +

k∑
ν=1

∂wνFi µ(t, x, zϕ(t,x)) ? (u[ν] )ϕ(t,x) ∂xφ(t, x),

W[i][z, u](t, x) = ∂xGi(t, x, zϕ(t,x)) +

k∑
ν=1

∂wνGi(t, x, zϕ(t,x)) ? (u[ν] )ϕ(t,x) ∂xφ(t, x).

The functions (u[ν] )ϕ(t,x) ∂xφ(t, x) : D[ϕ(t, x)]→ Rn, ν = 1, . . . , k, are defined by

(u[ν] )ϕ(t,x) =

( n∑
j=1

(uν j )ϕ(t,x) ∂x1φj(t, x), . . . ,

n∑
j=1

(uν j )ϕ(t,x) ∂xnφj(t, x)

)
.

Let ψ ∈ X, ψ = (ψ1, . . . , ψk), be given and κ̃ < c ≤ a. Write

G[z, u] =
[
Gij [z, u]

]
i=1,...,k, j=1,...,n

, G[i][z, u] =
(
Gi 1[z, u], . . . ,Gi n[z, u]

)
,

where
G[i][z, u](t, x) = ∂xψi(t, x) on E0.i (2.5)

and

G[i][z, u](t, x) = ∂xψi(ai, g[i][z](ai, t, x)) +

t∫
ai

W[i][z, u](τ, g[i][z](τ, t, x)) dτ−

−
n∑
µ=1

t∫
ai

V[iµ][z, u](τ, g[i][z](τ, t, x))uiµ(τ, g[i][z](τ, t, x)) dτ.

(2.6)
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We put i = 1, . . . , k in (2.5), (2.6). We consider the system of integral functional
equations consisting of (2.4) and

u = G[z, u]. (2.7)

We first give estimates of solutions to (2.4), (2.7).

Lemma 2.2. Suppose that Assumptions H[ϕ], H?[F,G] are satisfied and

1) ψ ∈ X and κ̃ < c ≤ a,
2) the functions z̃ : Ec → Rk, ũ : Ec →Mk×n, are continuous and they satisfy (2.4),

(2.7).

Then
‖z̃‖(t,Rk) ≤ ζ(t), ‖ũ‖(t,Mk×n) ≤ χ(t), t ∈ [κ, c],

where

ζ(t) = c0 exp
[ t∫
κ

β(τ) dτ
]

+

t∫
κ

α(ξ) exp
[ t∫
ξ

β(τ)dτ
]
dξ, (2.8)

χ(t) =
[
c1 + (1 +Q?c1)

t∫
κ

β(τ) dτ
][

1−Q?(1 +Q?c1)

t∫
κ

β(τ) dτ
]−1

(2.9)

and Q? = max{1, Q}.

Proof. Write
ζ̃(t) = ‖z̃‖(t,Rk), χ̃(t) = ‖ũ‖(t,Mk×n), t ∈ [κ, c].

It follows from Assumption H?[F,G] and from (2.2), (2.3), (2.5), (2.6) that (ζ̃, χ̃)
satisfy the integral inequalities

ζ̃(t) ≤ c0 +

t∫
κ

[
α(τ) + β(τ) ζ̃(τ)

]
dτ,

χ̃(t) ≤ c1 +

t∫
κ

β(τ)
[
1 +Q?χ̃(τ)

]2
dτ, t ∈ [κ, c].

The functions (ζ, χ) satisfy integral equations corresponding to the above inequalities.
This proves the lemma.

In the next part of the paper we assume that c ∈ (κ, a] is such a small constant
that

Q?(1 +Q?c1)

c∫
κ

β(τ) dτ < 1. (2.10)
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3. EXISTENCE AND UNIQUENESS OF SOLUTIONS

Suppose that ψ ∈ X and ζ, χ : [κ, c]→ R+ are defined by (2.8), (2.9). Given d, h ∈ R+,
d ≥ c1, h ≥ c2. We denote by Cψ.c[ζ, d] the class of all z ∈ Cψ.c, such that

‖z‖(t,Rk) ≤ ζ(t) for t ∈ [κ, c] and ‖z(t, x)− z(t, y)‖∞ ≤ d ‖x− y‖ on Ec.

We denote by C∂ψi.c[χ, h], 1 ≤ i ≤ k, the set of all v ∈ C∂ψi.c satisfying the conditions:

‖v‖(t,Rn) ≤ χ(t) for t ∈ [ai, c] and ‖v(t, x)− v(t, y)‖ ≤ h ‖x− y‖ on Ec \ E0.i.

Write A = ζ(a), C = χ(a) and Ω[A] = E ×KC(B,Rk)[A], where

KC(B,Rk)[A] = {w ∈ C(B,Rk) : ‖w‖B ≤ A}.

Assumption H[F,G]. The functions F : Ω→Mk×n, G : Ω→ Rk satisfy Assumption
H?[F,G] and there is γ ∈ L([0, a],R+) such that the terms

‖∂xF[i](t, x, w)− ∂xF[i](t, x̄, w̄)‖n×n,
‖∂wF[i](t, x, w)− ∂wF[i](t, x̄, w̄)‖n×k;?, i = 1, . . . , k,

and

‖∂xG(t, x, w)− ∂xG(t, x̄, w̄)‖k×n, ‖∂wG(t, x, w)− ∂wG(t, x̄, w̄)‖k×k;?

are bounded form above on Ω[A] by γ(t)
[
‖x− x̄‖+ ‖w − w̄‖B

]
.

Remark 3.1. It is important in our considerations that we assume the Lipschitz
condition for ∂xG, ∂wG, ∂xF[i], ∂wF[i], 1 ≤ i ≤ k, on the bounded domain Ω[A]. It is
clear that there are functional differential systems such that Assumption H[F,G] holds
and the functions ∂xG, ∂wG, ∂xF[i], ∂wF[i], 1 ≤ i ≤ k, do not satisfy the Lipschitz
condition with respect to w on Ω.

Remark 3.2. Note that the theorems on the existence of solutions to hyperbolic
functional differential systems presented in [13,14] are not applicable to (1.1), (1.2).

Lemma 3.3. Suppose that Assumptions H[ϕ], H[F,G] are satisfied and ψ, ψ̃ ∈ X, z ∈
Cψ.c[ζ, d], z̃ ∈ Cψ̃.c[ζ, d]. Then the bicharacteristics g[i][z](·, t, x) and g[i][z̃](·, t, x) exist
on intervals [ai, δ[z; t, x] ] and [ai, δ[z̃; t, x] ] such that for ξ = δ[z; t, x], ξ̃ = δ[z̃; t, x] we
have: (ξ, g[i][z](ξ, t, x)) ∈ ∂Ec, (ξ̃, g[i][z](ξ̃, t, x)) ∈ ∂Ec, where i = 1, . . . , k and ∂Ec is
the boundary of Ec. For each i, 1 ≤ i ≤ k, the solution of (2.1) is unique and we have
the estimates

‖g[i][z](τ, t, x)− g[i][z](τ, t, y)‖ ≤ ‖x− y‖ exp

{
C̄

∣∣∣∣
t∫
τ

β(ξ) dξ

∣∣∣∣}, (3.1)

and

‖g[i][z](τ, t, x)− g[i][z̃](τ, t, x)‖ ≤
∣∣∣∣

t∫
τ

β(ξ) ‖z − z̃‖(ξ,Rk)

∣∣∣∣ exp

{
C̄
∣∣∣ t∫
τ

β(ξ) dξ
∣∣∣}, (3.2)

where C̄ = 1 + dQ, (t, x), (t, y) ∈ Ec \ E0.i, 1 ≤ i ≤ k.
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Proof. The existence and uniqueness of the solution to (2.1) follows from classical
theorems on Carathéodory solutions of ordinary differential equations. We prove that
the integral inequalities

‖g[i][z](τ, t, x)−g[i][z](τ, t, y)‖ ≤ ‖x−y‖+C̄
∣∣∣∣

t∫
τ

β(ξ) ‖g[i][z](ξ, t, x)−g[i][z](ξ, t, y)‖ dξ
∣∣∣∣

(3.3)
and

‖g[i][z](τ, t, x)− g[i][z̃](τ, t, x)‖ ≤

≤ C̄
∣∣∣∣

t∫
τ

β(ξ) ‖g[i][z](ξ, t, x)− g[i][z̃](ξ, t, x)‖d ξ
∣∣∣∣+

∣∣∣∣
t∫
τ

β(ξ) ‖z − z̃‖(ξ,Rk) d ξ

∣∣∣∣ (3.4)

are satisfied for 1 ≤ i ≤ k. It follows from (2.1) that

g[i][z](τ, t, x) = x+

τ∫
t

F[i](ξ, g[i][z](ξ, t, x), zϕ(ξ,g[i][z](ξ,t,x))) dξ.

Note that the functions zϕ(ξ,g[i][z](ξ,t,x)) and zϕ(ξ,g[i][z](ξ,t,y)) have different domains.
We need the following construction. Write E? = [−b0, a] × [−b − r, b + r]. There is
Z : E? → Rk such that:

(i) Z is continuous and ‖Z(t, x)− Z(t, y)‖∞ ≤ d ‖x− y‖ on E?,
(ii) Z(t, x) = z(t, x) for (t, x) ∈ E.

Then we have Zϕ(ξ,g[i][z](ξ,t,x)), Zϕ(ξ,g[i][z](ξ,t,y)) : B → Rk. We conclude from As-
sumptions H[ϕ], H[F,G] that

‖g[i][z](τ, t, x)− g[i][z](τ, t, y)‖ ≤
≤ ‖x− y‖+

+

∣∣∣∣∣
τ∫
t

‖F[i](ξ, g[i][z](ξ, t, x), Zϕ(ξ,g[i][z](ξ,t,x)))−

− F[i](ξ, g[i][z](ξ, t, y), Zϕ(ξ,g[i][z](ξ,t,y)))‖ dξ

∣∣∣∣∣ ≤
≤ ‖x− y‖+

+

∣∣∣∣∣
τ∫
t

β(ξ)
[
‖g[i][z](ξ, t, x)− g[i][z](ξ, t, y)‖+

+ ‖Zϕ(ξ,g[i][z](ξ,t,x)) − Zϕ(ξ,g[i][z](ξ,t,y))‖B
]
dξ

∣∣∣∣∣.
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This gives (3.3). In a similar way we prove (3.4). Then we obtain (3.1), (3.2) from the
Gronwall inequality.

Write

Γ0(t) = exp

{
c̄

t∫
κ

β(ξ)dξ

}[
C̄(1 + CQ)

t∫
κ

γ(ξ) dξ + (hQ2 + CQ0)

t∫
κ

β(ξ) dξ
]
,

Γ̃(t) = (1 + C)Γ0(t) +
[
c2 + h(1 + CQ)

]
exp

{
C̄

t∫
κ

β(ξ) dξ

}
,

Γ(t) = exp

{
C̄

t∫
κ

β(ξ) dξ

}[
c1 + C̄

t∫
κ

β(ξ) dξ
]
.

Assumption H[c]. The constant c ∈ (κ, a] is small enough to satisfy (2.10) and
Γ̃(c) ≤ h, Γ(c) ≤ d.

Theorem 3.4. Suppose that Assumptions H[ϕ], H[F,G], H[c] are satisfied and ψ ∈ X.
Then there exists a solution z̄ : Ec → Rk of (1.1), (1.2). If ψ̃ ∈ X, ψ̃ = (ψ̃1, . . . , ψ̃k),
and z̃ : Ec → Rk is a solution of (1.1) with the initial conditions

zi(t, x) = ψ̃i(t, x) on E0.i for 1 ≤ i ≤ k,

then there is Φ ∈ L([κ, c],R+) such that

‖z̄ − z̃‖(t,Rk) ≤ [|ψ − ψ̃|]0 exp

{ t∫
κ

Φ(ξ) dξ

}
, t ∈ [κ, c], (3.5)

where
[|ψ − ψ̃|]0 = max

1≤i≤k
max

{
|ψi(t, x)− ψ̃(t, x)| : (t, x) ∈ E0.i

}
.

Proof. The proof falls into three parts.
Part I. We define the sequences {z(m)}, {u(m)}, where

z(m) : Ec → Rk, z(m) = (z
(m)
1 , . . . , z

(m)
k ), u(m) : Ec →Mk×n,

u(m) =
[
u

(m)
ij

]
i=1,...,k, j=1,...,n

, u
(m)
[i] = (u

(m)
i1 , . . . , u

(m)
in ) for 1 ≤ i ≤ k,

in the following way. Write

z
(0)
i (t, x) = ψi(t, x) on E0.i, z

(0)
i (t, x) = ψi(ai, x) on Ec \ E0.i,

u
(0)
[i] (t, x) = ∂xψi(t, x) on E0.i, u

(0)
[i] (t, x) = ∂xψi(ai, x) on Ec \ E0.i,
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where i = 1, . . . , k. If z(m) : Ec → Rk and u(m) : Ec → Mk×n are already defined,
then u(m+1)

[i] is a solution of the equation

v = Q(m)
[i] [v], (3.6)

where v = (v1, . . . , vn) and

Q(m)
[i] [v](t, x) = ∂xψi(t, x) on E0.i, (3.7)

Q(m)
[i] [v](t, x) =

= ∂xψi(ai, g[i][z
(m)(ai, t, x))+

+

t∫
ai

W[i][z
(m), u(m)](τ, g[i][z

(m)](τ, t, x)) dτ−

−
n∑
µ=1

t∫
ai

V[iµ][z
(m), u(m)](τ, g[i][z

(m)](τ, t, x)) vµ(τ, g[i][z
(m)](τ, t, x) dτ on Ec \ E0.i.

(3.8)

We put i = 1, . . . , k in (3.6)–(3.8). The function z(m+1) is given by

z(m+1)(t, x) = F[z(m)](t, x) on Ec. (3.9)

We prove that:
(Im) the sequences {z(m)} and {u(m)} are defined on Ec and for m ≥ 0 we have

z(m) ∈ Cψ[ζ, d], u
(m)
[i] ∈ C∂ψi.c[χ, h] for 1 ≤ i ≤ k,

(IIm) there exist the sequences {∂xz(m)
i }, 1 ≤ i ≤ k, and for m ≥ 0 we have

∂xz
(m)
i (t, x) = u

(m)
[i] (t, x) on E0.i for 1 ≤ i ≤ k.

We prove (Im) and (IIm) by induction. It is clear that conditions (I0) and (II0) are
satisfied. Suppose that (Im) and (IIm) hold for a given m ≥ 0. We first prove that
there is

u(m+1) : Ec →Mk×n, u(m+1) =
[
u

(m+1)
ij

]
i=1,...,k, j=1,...,n

,

u
(m+1)
[i] = (u

(m+1)
i1 , . . . , u

(m+1)
in ) for 1 ≤ i ≤ k,

and u(m+1)
[i] ∈ C∂ψi.c[χ, h] for 1 ≤ i ≤ k. We claim that

Q(m)
[i] : C∂ψi.c[χ, h]→ C∂ψi.c[χ, h]. (3.10)

Suppose that v ∈ C∂ψi.c[χ, h]. It is easily seen that the terms

t∫
ai

∥∥W[i][z
(m), u(m)](τ, g[i](τ, t, x))−W[i][z

(m), u(m)](τ, t, y))
∥∥ dτ,
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t∫
ai

∥∥V[iµ][z
(m), u(m)](τ, g[i](τ, t, x))− V[iµ][z

(m), u(m)](τ, t, y))
∥∥ dτ

can be bounded from above by Γ0(t) ‖x− y‖. This gives∥∥Q(m)
[i] [v](t, x)−Q(m)

[i] [v](t, y)
∥∥ ≤ Γ̃(t) ‖x− y‖ on Ec \ E0.i for i = 1, . . . , k. (3.11)

It follows from Assumptions H[ϕ], H[F,G] that

∥∥Q(m)
[i] [v](t, x)

∥∥ ≤ c1 +

t∫
κ

β(τ)
[
1 +Q? χ(t)

]2
dτ, (t, x) ∈ Ec \ E0.i,

and consequently ∥∥Q(m)
[i] [v]

∥∥
(t,Rk)

≤ χ(t) for t ∈ [ai, c]. (3.12)

Estimates (3.11), (3.12) and (3.7) imply (3.10).
It follows that there is K ∈ L([κ, c],R+) such that for v, ṽ ∈ C∂ψi.c[χ, h] we have

∥∥Q(m)
[i] [v](t, x)−Q(m)

[i] [ṽ]‖ ≤
t∫

ai

K(τ) ‖v − ṽ‖(τ,Rn) dτ, (t, x) ∈ Ec \ E0.i.

For the above v, ṽ we put

[|v − ṽ|] = max

{
‖v − ṽ‖(t,Rn) exp

[
− 2

t∫
ai

K(τ)dτ

]
: t ∈ [ai, c]

}
.

Then we have

‖Q(m)
[i] [v](t, x)−Q(m)

[i] [ṽ]‖ ≤ [|v − ṽ|]
t∫

ai

K(τ) exp

{
2

τ∫
ai

K(ξ)dξ

}
dτ ≤

≤ 1

2
[|v − ṽ|] exp

{
2

t∫
ai

K(ξ)dξ

}
, (t, x) ∈ Ec \ E0.i,

and consequently [∣∣Q(m)
[i] [v]−Q(m)

[i] [ṽ
∣∣] ≤ 1

2
[|v − ṽ|].

From the Banach fixed point theorem it follows that there exists exactly one u(m+1)
[i] ∈

C∂ψi.c[χ, h] satisfying (3.6). Then u(m+1) is defined on Ec. It is easily seen that z(m+1)

given by (3.9) satisfies the conditions

‖z(m+1)‖(t,Rk) ≤ ζ(t), t ∈ [κ, c],
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‖z(m+1)(t, x)− z(m+1)(t, y)‖∞ ≤ Γ(t) ‖x− y‖ on Ec.

It follows from the above estimates and from (2.2) that z(m+1) ∈ Cψ.c[ζ, d] which
completes the proof of (Im+1). Write

W
(m+1)
i (t, x, y) = z

(m+1)
i (t, y)− z(m+1)

i (t, x)− u(m+1)
[i] (t, x) ◦ (y − x),

(t, x), (t, y) ∈ Ec, 1 ≤ i ≤ k,

and W (m+1) =
(
W

(m+1)
1 , . . . ,W

(m+1)
k

)
. It follows that there is C(m+1) ∈ R+ such

that
‖W (m+1)(t, x, y)‖∞ ≤ C(m+1)‖x− y‖2, (t, x), (t, y) ∈ Ec. (3.13)

We conclude from (3.13) that there exists the derivatives ∂xz
(m+1)
i , 1 ≤ i ≤ k, and

∂xz
(m+1)
i (t, x) = u

(m+1)
[i] (t, x) on Ec. This proves (IIm+1).

Part II. We prove that the sequences {z(m)} and {u(m)} are uniformly convergent
on Ec. Write

Z(m)(t) = ‖z(m) − z(m−1)‖(t,Rk), U (m)(t) = ‖u(m) − u(m−1)‖(t,Mk×n),

where t ∈ [κ, c], m ≥ 1. We conclude from Assumptions H[ϕ], H[F,G] and from
(3.6)–(3.9) that there are K0, K1, K2 ∈ L([κ, c],R+) such that

Z(m+1)(t) ≤
t∫
κ

K0(τ)Z(m)(τ)dτ (3.14)

and

U (m+1)(t) ≤
t∫
κ

K1(τ)
[
Z(m)(τ) + U (m)(τ)

]
dτ +

t∫
κ

K2(τ)U (m+1)(τ) dτ, (3.15)

where m ≥ 1, t ∈ [κ, c]. From (3.15) it may be concluded that

U (m+1)(t) ≤
t∫
κ

K1(τ)
[
Z(m)(τ) + U (m)(τ)

]
dτ exp

{ t∫
κ

K2(τ) dτ

}
(3.16)

where m ≥ 1, t ∈ [κ, c]. It follows from (3.14), (3.16) that there is K ∈ L([κ, c],R+)
such that

Z(m+1)(t) +U (m+1)(t) ≤
t∫
κ

K(τ)
[
Z(m)(τ) +U (m)(τ)

]
dτ, t ∈ [κ, c], m ≥ 1. (3.17)

Write V (m)(t) = Z(m)(t) + U (m)(t), t ∈ [κ, c], m ≥ 1, and

[|V (m)|] = max

{
V (m)(t) exp

{
− 2

t∫
κ

K(τ) dτ
}

: t ∈ [κ, c]

}
.
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We conclude from (3.17) that

[|V (m+1)|] ≤ 1

2
[|V (m)|] for m ≥ 1.

There is C1 ∈ R+ such that [|V (1)|] ≤ C1. From the above recurrent inequality we
conclude that

lim
m→∞

[|V (m)|] = 0

and consequently there are

z̄ : Ec → Rk, z̄ = (z̄1, . . . , z̄k),

ū : Ec →Mk×n, ū =
[
ūij
]
i=1,...,k, j=1,...,n

, ū[i] = (ūi1, . . . , ūin), 1 ≤ i ≤ k,

such that

z̄(t, x) = lim
m→∞

z(m)(t, x), ū(t, x) = lim
m→∞

u(m)(t, x) uniformly on Ec.

We conclude from (Im), (IIm) that there exist the derivatives ∂xz̄i, 1 ≤ i ≤ k, and
∂xz̄i(t, x) = ū[i](t, x) on Ec for 1 ≤ i ≤ k. It follows from (3.9) that

z̄i(t, g[i][z̄](t, ai, x)) = ψi(ai, x) +

t∫
ai

Gi
(
τ, g[i][z̄](τ, ai, x), z̄ϕ(τ,g[i][z̄](τ,ai,x))

)
dτ

and z̄(t, x) = ψi(t, x) on E0.i, 1 ≤ i ≤ k. It is easily seen that z̄ is a solution
to (1.1), (1.2).

Part III. We prove (3.5). It follows that the function z̄ − z̃ satisfies the integral
inequality

‖z̄ − z̃‖(t,Rk) ≤ [|ψ − ψ̃|]0 +

t∫
κ

Φ(τ) ‖z̄ − z̃‖(τ,Rk) dτ, t ∈ [κ, c],

where

Φ(τ) = β(τ)

{
1 + exp

[
C̄

c∫
κ

β(ξ) dξ

] [
c1 + C̄

c∫
κ

β(ξ) dξ

]}
.

It follows from the Gronwall inequality that (3.5) is satisfied with the above given Φ.
This completes the proof of the theorem.

Remark 3.5. Note that results presented in [4, 10, 22] are not applicable to our
generalized Cauchy problem.
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4. DIFFERENTIABILITY OF SOLUTIONS

Given c̄ = (c0, c1, c2) > (0, 0, 0). In this part of the paper we denote by X the set of
all ψ = (ψ1, . . . , ψk) such that for each i, 1 ≤ i ≤ k we have:

(i) ψi ∈ C(E0.i,R), the derivatives ∂xψi = (∂x1ψi, . . . , ∂xnψi) exist on E0.i and
∂xψi ∈ C(E0.i,Rn),

(ii) the estimates
|ψi(t, x)| < c0, ‖∂xψi(t, x)‖ < c1,

‖∂xψi(t, x)− ∂xψi(t, y)‖ < c2‖x− y‖

are satisfied on E0.i.

Suppose the Assumptions H[ϕ], H[F,G], H[c] are satisfied and ψ ∈ X. Let us
denote by z(·, ψ) the solution of (1.1), (1.2). Let g[i][z(·, ψ)], 1 ≤ i ≤ k, denote the
i-th bicharacteristic of (1.1) corresponding to z(·, ψ). Write

Σc.i = {(τ, t, x) : (t, x) ∈ E : ai ≤ t ≤ c, ai ≤ τ ≤ t}, i = 1, . . . , k.

We will use the symbols Ξ = (Ξ1, . . . ,Ξk) and Λ = (Λ1, . . . ,Λk) to denote the opera-
tors defined on X in the following way:

Ξ[ψ] = z(·, ψ), Λi[ψ] = g[i]z(·, ψ), i = 1, . . . , k.

Then we have: Ξ : X→ C(Ec,Rk) and Λi : X→ C(Σc.i,Rn) for 1 ≤ i ≤ k.
We prove that for each ψ ∈ X there exist the Fréchet derivatives ∂Ξi[ψ], ∂Λi[ψ]

of Ξi and Λi at the point ψ ∈ X, 1 ≤ i ≤ k. Moreover, if ψ, ϑ ∈ X then the
functions (∂Ξ1[ψ]ϑ, . . . , ∂Ξk[ψ]ϑ) and ∂Λi[ψ]ϑ, 1 ≤ i ≤ k, are solutions of linear
integral functional systems generated by (1.1), (1.2).

The following notations will be needed throughout the paper. For
Y ∈ CL(B,Mn×k), U ∈ CL(B,Mk×n), Ỹ ∈ CL(B,Rk), w̃ ∈ C(B,Rk), q ∈ Rn,
where

Y =
[
Yij
]
i=1,...,n, j=1,...,k

, U =
[
Uij
]
i=1,...,k, j=1,...,n

,

Ỹ = (Ỹ1, . . . , Ỹk), w̃ = (w̃1, . . . , w̃k)T , q = (q1, . . . , qn)T ,

we write

Y w̃ =

( k∑
j=1

Y1jw̃j , . . . ,

k∑
j=1

Ynjw̃j

)T
,

Ỹ � w̃ =

k∑
i=1

Ỹi w̃i,

U q =

( n∑
j=1

U1jqj , . . . ,

n∑
j=1

Ukjqj

)T
.

Let z = (z1, . . . , zk)T and ∆[i] = (∆i1, . . . ,∆in), 1 ≤ i ≤ k, denote unknown functions
of the variables (t, x) and (τ, t, x) respectively. Suppose that ψ, ϑ ∈ X.We construct a
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linear system of integral functional equations for ∂Ξi[ψ]ϑ, ∂Λi[ψ]ϑ, 1 ≤ i ≤ k. Write
u(·, ψ) = ∂xz(·, ψ), and

U (i)(τ, t, x,∆[i]) =
(
u(·, ψ)

)
ϕ(τ,g[i][z(·,ψ)](τ,t,x))

[
∂xφ(τ, g[i][z(·, ψ)](τ, t, x))∆[i](τ, t, x)

]
,

θi(τ, t, x) =
(
τ, g[i][z(·, ψ)](τ, t, x), (z(·, ψ))ϕ(τ,g[i][z(·,ψ)](τ,t,x))

)
,

where 1 ≤ i ≤ k. It follows from Theorem 3.4 that

z(·, ψ) : Ec → Rk, u(·, ψ) : Ec →Mk×n, g[i][z(·, ψ)] : Σc.i → Rn, 1 ≤ i ≤ k,

are known functions. We consider the system of integral functional equations

zi(t, x) = ϑ(ai, g[i][z(·, ψ)](ai, t, x))+

+ ∂xψi(ai, g[i][z(·, ψ)](ai, t, x)) ◦∆[i](ai, t, x)+

+

t∫
ai

∂xGi(θi(ξ, t, x)) ◦∆[i](ξ, t, x) dξ+

+

t∫
ai

∂wGi(θi(ξ, t, x)) � zϕ(ξ,g[i][z(·,ψ)](ξ,t,x)) dξ+

+

t∫
ai

∂wGi(θi(ξ, t, x)) � U (i)(ξ, t, x,∆[i]) dξ

(4.1)

with the initial conditions

zi(t, x) = ϑi(t, x) on E0.i (4.2)

and

∆[i](τ, t, x) =

τ∫
t

∂xF[i](θi(ξ, t, x))∆[i](ξ, t, x) dξ+

+

τ∫
t

∂wF[i](θi(ξ, t, x)) zϕ(ξ,g[i][z(·,ψ)](ξ,t,x)) dξ+

+

τ∫
t

∂wF[i](θi(ξ, t, x))U (i)(ξ, t, x,∆[i]) dξ.

(4.3)

We put i = 1, . . . , k in (4.1)–(4.3).
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We formulate the main theorem of the paper.

Theorem 4.1. If Assumptions H[ϕ], H[F,G], H[c] are satisfied and ψ ∈ X, then:

(i) there exist the Fréchet derivatives ∂Ξi[ψ], ∂Λi[ψ], 1 ≤ i ≤ k,
(ii) if ϑ ∈ X then the functions ∂Ξi[ψ]ϑ, ∂Λi[ψ]ϑ, 1 ≤ i ≤ k, satisfy (4.1)–(4.3).

Proof. The proof will be divided into three parts.
Part I. We prove that there exists exactly one solution (z̃, ∆̃[1], . . . , ∆̃[k]) of system
(4.1)–(4.3) and z̃ ∈ Cϑ.c, ∆̃[i] ∈ C(Σc.i,Rn) for 1 ≤ i ≤ k.

Suppose that z ∈ Cϑ.c is given. Let us consider system (4.3) with the above fixed z.
It follows that for each i ∈ {1, . . . , k} there exists exactly one solution ∆[i][z] of (4.3)
and ∆[i][z] ∈ C(Σc.i,Rn). Moreover, there is γ? ∈ L([κ, c],R+) such that

‖∆[i][z](τ, t, x)−∆[i][z̄](τ, t, x)‖ ≤
t∫
τ

γ?(ξ) ‖z − z̄‖(ξ,Rk) dξ, (4.4)

where (τ, t, x) ∈ Σc.i and z, z̄ ∈ Cϑ.c. Denote F̃[z] = (F̃1[z], . . . , F̃k[z]), where

F̃i[z] = ϑ(ai, g[i][z(·, ψ)](ai, t, x))+

+ ∂xψi(ai, g[i][z(·, ψ)](ai, t, x)) ◦∆[i][z](ai, t, x)+

+

t∫
ai

∂xGi(θi(ξ, t, x)) ◦∆[i][z](ξ, t, x) dξ+

+

t∫
ai

∂wGi(θi(ξ, t, x)) � zϕ(ξ,g[i][z(·,ψ)](ξ,t,x)) dξ+

+

t∫
ai

∂wGi(θi(ξ, t, x)) � U (i)(ξ, t, x,∆[i][z]) dξ

for (t, x) ∈ Ec \E0.i and F̃i[z](t, x) = ϑi(t, x) on E0.i.We put i = 1, . . . , k in the above
definitions. We consider the integral functional equation

z = F̃[z]. (4.5)

It follows from Assumption H[F,G] and from (4.4) that there is γ0 ∈ L([κ, c],R+)
such that

‖F̃[z](t, x)− F̃[z̄](t, x)‖∞ ≤
t∫
κ

γ0(ξ) ‖z − z̄‖(ξ,Rk) dξ, (t, x) ∈ Ec, κ ≤ t ≤ c,

where z, z̄ ∈ Cϑ. For the above z, z̄ we put

[|z − z̄|] = max

{
‖z − z̄‖(t,Rk) exp

[
− 2

t∫
κ

γ0(ξ) dξ

]
: t ∈ [κ, c]

}
.
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Then we have

[| F̃[z]− F̃[z̄] |] ≤ 1

2
[|z − z̄|].

From the Banach fixed point theorem it follows that there exists exactly one solution
z̃ ∈ Cϑ.c of (4.5). Then (z̃,∆[1][z̃], . . . ,∆[k][z̃]) is the desired solution of (4.1)–(4.3).

Part II. Write

z(s)(t, x) =
1

s

[
z(t, x, ψ + sϑ)− z(t, x, ψ)

]T
,

∆
(s)
[i] (τ, t, x) =

1

s

[
g[i][z(·, ψ + sϑ)](τ, t, x)− g[i][z(·, ψ)](τ, t, x)

]T
,

where s ∈ R, s 6= 0, i = 1, . . . , k. There is ε0 > 0 such that for s ∈ (−ε0, ε0), s 6= 0,
we have: ψ + sϑ ∈ X.

We write integral functional equations for
(
z(s),∆

(s)
[1] , . . . ,∆

(s)
[k]

)
. More precisely,

we prove that the above functions are approximate solutions to (4.1)–(4.3). We use
the Hadamard mean value theorem. We need the following intermediate points:

P
(s)
i (λ, ξ, t, x) =

(
ξ, (1− λ)g[i][z(·, ψ)](ξ, t, x) + λg[i][z(·, ψ + sϑ)](ξ, t, x),

(1− λ)(z(·, ψ))ϕ(ξ,g[i][z(·,ψ)](ξ,t,x)) + λ(z(·, ψ + sϑ))ϕ(ξ,g[i][z(·,ψ+ϑ)](ξ,t,x))

)
,

Q
(s)
i (λ, ξ, t, x) =

(
(1− λ)ϕ(ξ, g[i][z(·, ψ)](ξ, t, x)) + λϕ(ξ, g[i][z(·, ψ + sϑ)](ξ, t, x))

)
,

S
(s)
i (λ, ξ, t, x) =

(
ξ, (1− λ)g[i][z(·, ψ)](ξ, t, x) + λg[i][z(·, ψ + sϑ)](ξ, t, x)

)
,

where λ ∈ [0, 1] and i = 1, . . . , k. Write

U (i,s)(τ, t, x,∆
(s)
[i] ) =

=

1∫
0

(u(·, ψ))
Q

(s)
i (λ,τ,t,x)

dλ

1∫
0

∂xφ(τ, , S
(s)
i (λ, τ, t, x)) dλ∆

(s)
[i] (τ, t, x),

where the function

1∫
0

(u(·, ψ))
Q

(s)
i (λ,τ,t,x)

dλ : B[Q
(s)
i (λ, τ, t, x)]→Mk×n
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is defined by

( 1∫
0

(u(·, ψ))Qi(λ,s,τ,t,x) dλ
)

(τ, y) =

1∫
0

(u(·, ψ))Qi(λ,s,τ,t,x)(τ, y) dλ.

It follows from Assumption H[F,G] and from the Hadamard mean value theorem that

z
(s)
i (t, x) = ϑ(ai, g[i][z(·, ψ + sϑ)](ai, t, x))+

+

1∫
0

∂xψi(S
(s)
i (λ, ai, t, x)) dλ ◦∆

(s)
[i] (ai, t, x)+

+

t∫
ai

1∫
0

∂xGi(P
(s)
i (λ, ξ, t, x)) dλ ◦∆

(s)
[i] (ξ, t, x) dξ+

+

t∫
ai

1∫
0

∂wGi(P
(s)
i (λ, ξ, t, x)) dλ �

(
z(s)
)
ϕ(ξ,g[i][z(·,ψ+ϑ)](ξ,t,x))

dξ+

+

t∫
ai

1∫
0

∂wGi(P
(s)
i (λ, ξ, t, x)0 dλ � U (i,s)(ξ, t, x,∆

(s)
[i] ) dξ on Ec \ E0.i,

z
(s)
i (t, x) = ϑ(t, x) on E0.i

and

∆
(s)
i (τ, t, x) =

τ∫
t

1∫
0

∂xF[i](P
(s)
i (λ, ξ, t, x)) dλ ∆

(s)
[i] (ξ, t, x) dξ+

+

τ∫
t

1∫
0

∂wF[i](P
(s)
i (λ, ξ, t, x)) dλ

(
z(s)
)
ϕ(ξ,g[i][z(·,ψ+ϑ)](ξ,t,x))

dξ+

+

τ∫
t

1∫
0

∂wF[i](P
(s)
i (λ, ξ, t, x)) dλ U (i,s)(ξ, t, x,∆

(s)
[i] ) dξ on Ec.i.

It is clear that integral functional equations (4.1)–(4.3) are generated by the above
relations.
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Part III. We prove that

lim
s→0

z(s)(t, x) = z̃(t, x) uniformly on Ec, (4.6)

lim
s→0

∆
(s)
[i] (τ, t, x) = ∆̃[i](τ, t, x) uniformly on Σc.i, i = 1, . . . , k. (4.7)

It follows from (4.1)–(4.3) that

z̃i(t, x)− z(s)
i (t, x) =

= ∂xψi(ai, g[i][z(·, ψ)](ai, t, x) ◦
[
∆̃[i](ai, t, x)−∆

(s)
[i] (ai, t, x)

]
+

+

t∫
ai

∂xGi(θi(ξ, t, x)) ◦ [∆̃[i](ξ, t, x)−∆
(s)
[i] (ξ, t, x)

]
+

+

t∫
ai

∂wGi(θi(ξ, t, x)) �
[
z̃ϕ(ξ,g[i][z(·,ψ)](ξ,t,x))−

− (z(s))ϕ(ξ,g[i][z(·,ψ+sϑ)](ξ,t,x))

]
dξ+

+

t∫
ai

∂wGi(θi(ξ, t, x) � U (i)(ξ, t, x, ∆̃[i] −∆
(s)
[i] ) dξ +Ai(s, t, x)

(4.8)

and

∆̃[i](τ, t, x)−∆
(s)
[i] (τ, t, x) =

=

τ∫
t

∂xF[i](θi(ξ, t, x)) ◦ [∆̃[i](ξ, t, x)−∆
(s)
[i] (ξ, t, x)

]
+

+

τ∫
t

∂wF[i](θi(ξ, t, x)) �
[
z̃ϕ(ξ,g[i][z(·,ψ)](ξ,t,x))−

− (z(s))ϕ(ξ,g[i][z(·,ψ+sϑ)](ξ,t,x))

]
dξ+

+

τ∫
t

∂wF[i](θi(ξ, t, x) � U (i)(ξ, t, x, ∆̃[i] −∆
(s)
[i] ) dξ +Bi(s, τ, t, x),

(4.9)
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where

Ai(s, t, x) =

= ϑi(ai, g[i][z(·, ψ)](ai, t, x)− ϑi(ai, g[i][z(·, ψ + sϑ)](ai, t, x)+

+

1∫
0

[
∂xψi(ai, g[i][z(·, ψ)](ai, t, x))− ∂xψi(S(s)

i (λ, ai, t, x))
]
dλ ◦∆

(s)
[i] (ai, t, x)+

+

t∫
ai

1∫
0

[
∂xGi(θi(ξ, t, x))− ∂xGi(P (s)

i (λ, ξ, t, x))
]
dλ ◦∆

(s)
[i] +

+

t∫
ai

1∫
0

[
∂wGi(θi(ξ, t, x))−

− ∂wGi(P (s)
i (λ, ξ, t, x))

]
dλ � (z(s))ϕ(ξ,g[i][z(·,ψ+sϑ)](ξ,t,x)) dξ+

+

t∫
ai

[
∂wGi(θi(ξ, t, x)) � U (i)(ξ, t, x,∆

(s)
[i] )−

−
1∫

0

∂wGi(P
(s)
i (λ, ξ, t, x))dλ � U (i,s)(ξ, t, x,∆

(s)
[i] )
]
dξ

(4.10)

and

Bi(s, τ, t, x) =

=

τ∫
t

1∫
0

[
∂xF[i](θi(ξ, t, x))− ∂xF[i](P

(s)
i (λ, ξ, t, x))

]
dλ ∆

(s)
[i] (ξ, t, x) dξ+

+

τ∫
t

1∫
0

[
∂wF[i](θi(ξ, t, x))−

− ∂wF[i](P
(s)
i (λ, ξ, t, x))

]
dλ(z(s))ϕ(ξ,g[i][z(·,ψ+sϑ)](ξ,t,x)) dξ+

+

τ∫
t

[
∂wF[i](θi(ξ, t, x))U (i)(ξ, t, x,∆

(s)
[i] )−

−
1∫

0

∂wF[i](P
(s)
i (λ, ξ, t, x))dλU (i,s)(ξ, t, x,∆

(s)
[i] )
]
dξ.

(4.11)
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We put i = 1, . . . , k in (4.8)–(4.11) It follows from (4.9), (4.11) that there are
f0 ∈ C([0, 1],R+) and γ0, γ1 ∈ L([κ, c],R+) such that

‖∆̃[i](τ, t, x)−∆
(s)
[i] (τ, t, x)‖ ≤ f0(s) +

∣∣∣∣
τ∫
t

γ0(ξ)‖z̃ − z(s)‖(ξ,Rk) dξ

∣∣∣∣+
+

∣∣∣∣
τ∫
t

γ1(ξ)‖∆̃[i](ξ, t, x)−∆
(s)
[i] (ξ, t, x)‖ dξ

∣∣∣∣, (τ, t, x) ∈ Ec,i,

and f0(0) = 0. We conclude from the Gronwall inequality that

‖∆̃[i](τ, t, x)−∆
(s)
[i] (τ, t, x)‖ ≤

[
f0(s)+

∣∣∣∣
τ∫
t

γ0(ξ) ‖z̃−z(s)‖(ξ,Rk) dξ

∣∣∣∣] exp

{∣∣∣∣
τ∫
t

γ1(ξ) dξ

∣∣∣∣}.
(4.12)

From (4.8), (4.10), (4.12) we deduce that there are f ∈ C([0, 1],R+) and γ̃ ∈
L([κ, c],R+) such that

‖z̃ − z(s)‖(t,Rk) ≤ f(s) +

t∫
κ

γ̃(ξ) ‖z̃ − z(s)‖(ξ,Rk) dξ, t ∈ [κ, c],

and f(0) = 0. Then we have

‖z̃ − z(s)‖(t,Rk) ≤ f(s) exp

{ t∫
κ

γ̃(ξ) dξ

}
, t ∈ [κ, c]. (4.13)

We conclude from (4.12), (4.13) that relations (4.6), (4.7) hold. This completes the
proof of the theorem.

We give comments on particular cases of problem (1.1), (1.2). Suppose that there
is M̃ = (M̃1, . . . , M̃n) ∈ Rn+ such thatM(t) = M̃t for t ∈ [0, a]. Then E is the classical
Haar pyramid. Suppose that κ > 0, 0 ≤ κ0 ≤ κ and h ≤ M̃κ0, h = (h1, . . . , hn) ∈ Rn+.
Consider the functions

F̃ : E × Rk →Mk×n, F̃ =
[
F̃ij
]
i=1,...,k, j=1,...,n

, F̃[i] = (F̃i1, . . . , F̃in), 1 ≤ i ≤ k,

G̃ : E × Rk → Rk, G̃ = (G̃1, . . . , G̃k).

Write

F[i](t, x, w) = F̃[i]

(
t, x,

h∫
−h

w(−κ0, y) dy

)
, Gi(t, x, w) = G̃i

(
t, x,

h∫
−h

w(−κ0, y) dy

)
,
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where (t, x, w) ∈ Ω and ai ≤ t ≤ a, and

F[i](t, x, w) = F̃[i]

(
t, x,

h∫
−h

w(0, y) dy

)
, Gi(t, x, w) = G̃i

(
t, x,

h∫
−h

w(0, y) dy

)
,

where (t, x, w) ∈ Ω and 0 ≤ t < ai. We put i = 1, . . . , k in the above definitions. Note
that the i-th equation in (1.1) is considered for ai ≤ t ≤ a and (t, x) ∈ E.

Suppose that ϕ(t, x) = (t, x) for (t, x) ∈ E. Then (1.1) reduces to the differential
integral system

∂tzi(t, x) + F̃[i]

(
t, x,

x+h∫
x−h

z(t− κ0, y) dy

)
◦ ∂xzi(t, x) =

= G̃i

(
t, x,

x+h∫
x−h

z(t− κ0, y) dy

)
, i = 1, . . . , k.

(4.14)

It follows easily that Theorem 4.1 can be applied to (4.14), (1.2).
For the above F̃ and G̃ we put

F (t, x, w) = F̃ (t, x, w(0, 0[n])), G(t, x, w) = G̃(t, x, w(0, 0[n])).

Then (1.1) is a system of quasilinear differential equations with deviated variables

∂tzi(t, x) + F̃[i](t, x, z(ϕ(t, x)) ◦ ∂xzi(t, x) = G̃i(t, x, z(ϕ(t, x)), i = 1, . . . , k. (4.15)

It is clear that Theorem 4.1 can be applied to (4.15), (1.2).
Let us consider the quasilinear system

∂tzi(t, x) + F[i](t, x, z(t,x)) ◦ ∂xzi(t, x) = Gi(t, x, z(t,x)), i = 1, . . . , k, (4.16)

which is a particular case of (1.1). The functional differential problem consisting of
(4.16) and (1.2) is a generalized Cauchy problem.

This is the following motivation for investigation of (1.1), (1.2) instead of (4.16),
(1.2). Quasilinear systems with deviated variables are obtained from (4.16) in the
following way. Write

F (t, x, w) = F̃ (t, x, w(ϕ(t, x)− (t, x))),

G(t, x, w) = G̃(t, x, w(ϕ(t, x)− (t, x))).
(4.17)

Then system (4.16) is equivalent to (4.15). Note that the functions F and G given by
(4.17) do not satisfy Assumption H[F,G]. More precisely, the derivatives ∂xG, ∂xF[i],
1 ≤ i ≤ k, do not exist on Ω.

With the above motivation we have considered problem (1.1), (1.2).
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