Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The resistance of thermally modified oriental spruce, Scots pine, and oriental beech wood samples against fungi is investigated under different temperatures. Thermally modified wood samples are subjected to brown-rot fungi or white-rot fungi. In the control samples, 32-43% of the total mass losses are caused by fungal degradation, but only 0.47-0.78% was caused by the thermally modified wood samples. The changes in the wood cell walls main components, in the wood samples were analysed via attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. The thermally modified and the control wood samples’ spectra after the decay test exhibit different intensities. Thermal modification increases wood’s resistance against decay by removing hemicellulose polymers from the wood cell wall. The resistance against the decay of thermally modified wood is quite high due to the loss of hemicellulose polymers in the wood cell wall. The thermally modified wood structure was also investigated via scanning electron microscopy (SEM) after decay testing. SEM images clearly elucidate that fungal degradation was not effective on the thermally modified wood samples. Conclusively, our study reveals that thermal modification improves some wood’s resistance in Turkey against fungal activity.
Słowa kluczowe
Rocznik
Tom
Strony
91--105
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
autor
- Department of Forest Industry Engineering, Faculty of Forest, Karadeniz Technical University, Trabzon, Turkey
autor
- Department of Foresty and Forest Products, Kavaklıdere Vocational School, Muğla Sıtkı Koçman University, Muğla, Turkey
autor
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, Beytepe Campus, Ankara, Turkey
autor
- Department of Biomedical Engineering, İstanbul Aydın University, Florya Campus, İstanbul, Turkey
Bibliografia
- Akgül M., Gümüskaya E., Korkut S. [2007]: Crystalline structure of heat-treated Scots pine [Pinus sylvestris L.] and Uludağ fir [Abies nordmanniana (Stev.) subsp. bornmuelleriana (Mattf.)]. Wood Science and Technology 41: 281-289. DOI: 10.1007/s00226-327 006-0110-9
- Awoyemi L., Jones I.P. [2011]: Anatomical explanations for the changes in properties of western red cedar (Thuja plicata) wood during heat treatment. Wood Science and Technology 45 [2]: 261-267. DOI: 10.1007/s00226-010-0315-9
- Bazyar B. [2012]: Decay resistance and physical properties of oil heat treated aspen wood. BioResources 7 [1]: 696-705. DOI: 10.15376/biores.7.1.0696-0705
- Boonstra M.J., Tjeedsma B. [2006]: Chemical analysis of heat treated softwoods. Holz als Roh- und Werkstoff 64: 204-211. DOI: 10.1007/s00107-005-0078-4
- Boonstra M.J., Rijsdijk J.F., Sander C., Kegel E., Tjeerdsma B., Militz H., Acker J., Stevens M. [2006a]: Microstructural and physical aspects of heat treated wood. Part 1. Softwoods. Maderas. Ciencia y Tecnología 8 [3]: 193-208. DOI: http://dx.doi.org/10.4067/S0718-221X2006000300006
- Boonstra M.J., Rijsdijk J.F., Sander C., Kegel E., Tjeerdsma B., Militz H., Acker J., Stevens M. [2006b]: Microstructural and physical aspects of heat treated wood. Part 2. Hardwoods. Maderas. Ciencia y Tecnología 8 [3]: 209–217. DOI: http://dx.doi.org/10.4067/S0718-221X2006000300007
- Boonstra M.J., Van Acker J., Kegel E. [2007]: Optimisation of two-stage heat treatment process: durability aspects. Wood Science and Technology 41 [1]: 31-57. DOI: 10.1007/s00226-006-0087-4
- Brito J.O., Silva F.G., Leão M.M., Almeida G. [2008]: Chemical composition changes in eucalyptus and pinus woods submitted to heat treatment. Bioresource Technology 99 [1]: 8545-8548. DOI: 10.1016/j.biortech.2008.03.069
- Calonego F.W., Severo E.T.D., Furtado E.L. [2010]: Decay resistance of thermally modified Eucalyptus grandis wood at 140°C, 160°C, 180°C, 200°C and 220°C. Bioresource Technology 101 [23]: 9391-9394. DOI: https://doi.org/10.1016/j.biortech.2010.06.119
- Chaouch M., Pétrissans M., Pétrissans A., Gérardin P. [2010]: Use of wood elemental composition to predict heat treatment intensity and decay resistance of different softwood and hardwood species. Polymer Degradation and Stability 95 [12]: 2255-2259. DOI: http://dx.doi.org/10.1016/j.polymdegradstab.2010.09.010
- Daniel G. [2003]: Microview of wood under degradation by bacteria and fungi,. In: Goodell B., Nicholas D.D., Schultz T.P. (eds.), Wood deterioration and preservation: advances in our changing world. American Chemical Society, Washington: 34-72
- Durmaz S., Özgenç Ö., Boyacı İ.H., Yıldız Ü.C., Erişir E. [2016]: Examination of the chemical changes in spruce wood degraded by brown-rot fungi using FT-IR and FTRaman spectroscopy. Vibrational Spectroscopy 85: 202-207. DOI: http://dx.doi.org/10.1016/j.vibspec.2016.04.020
- Ek M., Gellerstedt G., Henriksson G. [2009]: Wood Chemistry and Wood Biotechnology. Vol. 1. Walter de Gruyter, Berlin
- Esteves B., Velez Marques A., Domingos I., Pereira H. [2013]: Chemical changes of heat treated pine and eucalypt wood monitored by FTIR. Maderas. Ciencia y Tecnología 15 [2]: 245-258. DOI: http://dx.doi.org/10.4067/S0718-221X2013005000020.
- Eriksson K.E.L., Blanchette R., Ander P. [2012]: Microbial and enzymatic degradation of wood and wood components. Springer, New York
- Fackler K., Stevanic J.S., Ters T., Hinterstoisser B., Schwanninger L. [2010]: Localisation and characterisation of incipient brown-rot decay within spruce wood cell walls using FT-IR imaging microscopy. Enzyme and Microbial Technology 47 [6]: 257--267. DOI:10.1016/j.enzmictec.2010.07.009
- Ferraz A., Baeza J., Rodriguez J. [2000]: Estimating the chemical composition of biodegraded pine and eucalyptus wood by DRIFT spectroscopy and multivariate analysis. Bioresource Technology 74 [3]: 201-212. DOI: 10.1016/S0960-8524(00)00024-9
- Gündüz G., Korkut S., Korkut D.S. [2008]: The effects of heat treatment on physical and technological properties and surface roughness of Camiyanı Black Pine (Pinus nigra Arn. subsp. pallasiana var. pallasiana) wood. Bioresource Technology 99: 2275-2280. DOI: 10.1016/j.biortech.2007.05.015.
- Hakkou M., Pétrissans M., Gérardin P., Zoulalian A. [2006]: Investigations of the reasons for fungal durability of heat-treated beech wood. Polymer Degradation and Stability 91 [2]: 393-397. DOI: 10.1016/j.polymdegradstab.2005.04.042
- Irbe I., Andersone I., Andersons B., Noldt G., Dizhbite T., Kurnosova N., Nuopponen M. [2011]: Characterization of the initial degradation stage of Scots pine (Pinus sylvestris L.) sapwood after attack by brown-rot fungus Coniophora puteana. Biodegradation 22 [4]: 719-728. DOI: 10.1007/s10532-010-9449-6
- Ishimaru K., Hata T., Bronsveld P., Meier M., Imamura Y. [2007]: Spectroscopic analysis of carbonization behavior of wood, cellulose and lignin. Journal of Materials Science 42 [1]: 122-129. DOI: http://dx.doi.org/10.1007/s10853-006-1042-3
- Kačíková D., Kačík F., Čabalová I., Ďurkovič J. [2013]: Effects of thermal treatment on chemical, mechanical and color traits in Norway spruce wood. Bioresource Technology 144: 669-674. DOI: 10.1016/j.biortech.2006.11.006
- Kamdem D.P., Pizzi A., Jermannaud A. [2002]: Durability of heat-treated wood. Holz als Roh- und Werkstoff. 60 [1]: 1-6. DOI: 10.1007/s00107-001-0261-1
- Kihara M., Takayama M., Wariishi H., Tanaka H. [2002]: Determination of the carbonyl groups in native lignin utilizing Fourier transform Raman spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 58 [10]: 2213-2221. DOI: http://dx.doi.org/10.1016/S1386-1425(01)00693-X
- Kocaefe D., Poncsak S., Boluk Y. [2008]: Effect of thermal treatment on the chemical composition and mechanical properties of birch and aspen. BioResources 3 [2]: 517-537. DOI: 10.15376/biores.3.2.517-537
- Kotilainen R.A., Toivanen T.J., Alèn R.J. [2000]: FTIR monitoring of chemical changes in softwood during heating. Journal of Wood Chemistry and Technology 20 [3]: 307-320. DOI: 10.1080/02773810009349638
- Korkut S., Akgül M., Dündar T. [2008a]: The effects of heat treatment on some technological properties of Scots pine (Pinus sylvestris L.) wood. Bioresource Technology 99: 1861-1868. DOI: 10.1016/j.biortech.2007.03.038
- Korkut S., Kök M.S., Korkut D.S., Gürleyen T. [2008b]: The effects of heat treatment on technological properties in red-bud maple (Acer trautvetteri Medw.) wood. Bioresource Technology 99: 1538-1543. DOI: 10.1016/j.biortech.2007.04.021
- Lekounougou S., Pétrissans M., Jacquat J.P., Gelhaye E., Gérardin P. [2009]: Effect of heat treatment on extracellular enzymatic activities involved in beech wood degradation by Trametes versicolor. Wood Science and Technology 43 [3-4]: 331-341. DOI: 10.1007/s00226-008-0236-z
- Li Y., Dong X., Liu Y., Li J., Wang F. [2011]: Improvement of decay resistance of wood via combination treatment on wood cell wall: swell-bonding with maleic anhydride and graft copolymerization with glycidyl methacrylate and methyl methacrylate. International Biodeterioration & Biodegradation 65 [7]: 1087-1094. DOI: http://dx.doi.org/10.1016/j.ibiod.2011.08.009
- Mburu F., Dumarçay S., Huber F., Petrissans M., Gérardin P. [2007]: Evaluation of thermally modified Grevillea robusta heartwood as an alternative to shortage of wood resource in Kenya: Characterisation of physicochemical properties and improvement of bio-resistance. Bioresource Technology 98 [18]: 3478-3486. DOI: 10.1016/j.biortech.2006.11.006
- Mohebby B. [2005]: Attenuated total reflection infrared spectroscopy of white-rot decayed beech wood. International Biodeterioration & Biodegradation 55 [4]: 247-251. DOI: 10.1016/j.ibiod.2005.01.003
- Mohareb A., Sirmah P., Pétrissans M. [2012]: Effect of heat treatment intensity on wood chemical composition and decay durability of Pinus patula. European Journal of Wood and Wood Products 70 [4]: 519-524. DOI: 10.1007/s00107-011-0582-7
- Moore A.K., Owen N.L. [2001]: Infrared spectroscopic studies of solid wood. Applied Spectroscopy Reviews 36 [1]: 65-86. DOI: http://dx.doi.org/10.1081/ASR-100103090
- Naumann A., Navarro-González M., Peddireddi S., Kües U., Polle A. [2005]: Fourier transform infrared microscopy and imaging: Detection of fungi in wood. Fungal Genetics and Biology 42 [10]: 829-835. DOI: http://dx.doi.org/10.1016/j.fgb.2005.06.003
- Nuopponen M., Vuoripandnen T., Jämsä S., Viitaniemi P. [2003]: The effects of a heat treatment on the behaviour of extractives in softwood studied by FTIR spectroscopic methods. Wood Science and Technology 37 [2]: 109-115. DOI: 10.1007/s00226-003-0178-4
- Nuopponen M., Vuorinen T., Jämsä S., Viitaniemi P. [2005]: Thermal modifications in softwood studied by FT-IR and UV resonance Raman spectroscopies. Journal of Wood Chemistry and Technology 24 [1]: 13-26. DOI: http://dx.doi.org/10.1081/WCT-120035941
- Nuopponen M. [2005]: FT-IR and UV-Raman spectroscopic studies on thermal modification of Scots pine wood and its extractable compounds. Helsinki University of Technology, Laboratory of Forest Products Chemistry, (Reports Espoo, Series A 23) [PhD thesis]
- Özgenç Ö., Durmaz S., Boyaci I.H., Eksi-Kocak H. [2017]: Determination of chemical changes in heat-treated wood using ATR-FTIR and FT Raman spectrometry. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy: 395-400. DOI: http://dx.doi.org/10.1016/j.saa.2016.08.026
- Pandey K.K., Pitman A.J. [2003]: FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. International Biodeterioration & Biodegradation 52 [3]: 151-160. DOI: 10.1016/S0964-8305(03)00052-0
- Pandey K.K., Pitman A.J. [2004]: Examination of the lignin content in a softwood and a hardwood decayed by a brown-rot fungus with the acetyl bromide method and Fourier transform infrared spectroscopy. Journal of Polymer Science Part A: Polymer Chemistry 42 [10]: 2340-2346. DOI: 10.1002/pola.20071
- Pandey K.K., Nagvani H.C. [2007]: Rapid characterisation of brown and white rot degraded chir pine and rubberwood by FTIR spectroscopy. Holz als Roh- und Werkstoff 65 [6]: 477-481. DOI:10.1007/s00107-007-0181-9
- Popescu C.M., Popescu M.C., Vasile C. [2010]: Characterization of fungal degraded lime wood by FT-IR and 2D IR correlation spectroscopy. Microchemical Journal 95 [2]: 377-387. DOI:10.1016/j.microc.2010.02.021
- Rowell R.M. [2012]: Handbook of Wood Chemistry and Wood Composites. CRC Press, Boca Raton
- Windeisen E., Strobel C., Wegener G. [2007]: Chemical changes during the production of thermo-treated beech wood. Wood Science and Technology 41 [6]: 523-536. DOI: 10.1007/s00226-007-0146-5. DOI: 10.1016/j.biortech.2010.06.119
- Zeng Y., Yang X., Yu H., Zhang X., Ma F. [2012]: The delignification effects of white-rot fungal pretreatment on thermal characteristics of moso bamboo. Bioresource Technology 114: 437-442. DOI: 10.1016/j.biortech.2011.10.036
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c8a8e03e-d510-43dc-bee3-6827a45f2e1b