Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Each spring, pine pollen coats considerable expanses of Baltic Sea surface waters. Measurements have shown that there are areas where its concentrations in this surface layer are so high that they are the dominant constituent of the suspended particulate matter (SPM) (Pawlik and Ficek, 2016). It then determines to a large extent the optical properties of the water surface, inter alia by modifying the sea colour. To date, however, the concentration of this constituent in the marine environment has rarely been studied, and its presence is not accounted for in the satellite algorithms used to define the composition and properties of sea water. This may well be the source of substantial errors in the remote sensing of the optical properties of the water and the measurement of concentrations of the optically important constituents it contains (chlorophyll a, TSM, CDOM). Measuring the concentration of pollen suspensions in Baltic Sea water, which often contains prodigious amounts of other SPM, is a daunting experimental challenge. Firstly, we characterized the pollen from pine trees growing near the southern shores of the Baltic Sea (northern Poland) using a microscope and two instruments routinely used in oceanography for measuring SPM size distributions: the LISST-100X and the Coulter counter. The measurements and analyses showed that a correct interpretation of the LISST-100X and Coulter measurements, is sufficient to count the number of pollen grains in distilled water alone. Furthermore, our laboratory analysis of the particle size distribution spectra enabled the fraction due only to pine pollen grains to be separated from the overall SPM. We then tested our method of analysing the SPM composition, which showed that the LISST-100x instrument is both a useful and an effective means for the in situ detection of the pine pollen that one sees in spring in Baltic waters.
Czasopismo
Rocznik
Tom
Strony
233--243
Opis fizyczny
Bibliogr., 35 poz., fot., map., rys., tab., wykr.
Twórcy
autor
- Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Słupsk, Poland
autor
- Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Słupsk, Poland
Bibliografia
- 1. Agrawal, Y.C., Pottsmith, H.C., 2000. Instruments for particle size and settling velocity observations in sediment transport. Mar. Geol. 168, 89-114. https://doi.org/10.1016/S0025-3227(00)00044-X
- 2. Ahn, J.H., Grant, S.B., 2007. Size distribution, sources, and sea-sonality of suspended particles in southern California marine bathing waters. Environ. Sci. Technol. 41, 695-702. https://doi.org/10.1021/es061960+
- 3. Anglès, S., Jordi, A., Garcés, E., Masó, M., Basterretxea, G., 2008. High-resolution spatio-temporal distribution of a coastal phytoplankton bloom using laser in situ scattering and transmissometry (LISST). Harmful Algae. 7, 808-816. https://doi.org/10.1016/j.hal.2008.04.004
- 4. Bradtke, K., Latała, A., Czabański, P., 1997. Temporal and spatial variations in particle concentrations and size distributions in the Gulf of Gdańsk. Oceanol. Stud. XXVI (2-3), 39-59.
- 5. Bureau for Forest Management and Geodesy, 2020. National Forest Inventory (2015—2019). Sękocin Stary, 5-95.
- 6. Cho, Y.-J., Kim, I.S., Kim, P.-G., Lee, E.J., 2003. Deposition of airborne pine pollen in a temperate pine forest. Grana 42 (3), 178-182. https://doi.org/10.1080/00173130310016158
- 7. Dyakowska, J., 1959. Textbook of palynology. Methods and problems. Geological Publ., Warsaw, Poland.
- 8. Eisma, D., P., Bernard, G.C., Cadeé, V., Ittekkot, J., Kalf, R., Laane, J.M., Martin, W.G., Mook, van Put A., Schumacher, T., 1991. Suspended-matter particle size in some West-European estuaries, part I: particle size distribution. Neth. J. Sea Res. 28 (3), 193-214. https://doi.org/10.1016/0077-579(91)90017-U
- 9. Emelyanov, E.M. (Ed.), 2002. Geology of the Gdańsk Basin, Baltic Sea. Yantarny Skaz, Kaliningrad, 494 pp.
- 10. Erdtman, G., 1954. Pollen morphology and plant taxonomy. Bot. Notis. H. 2
- 11. Ficek, D., Zapadka, T., Dera, J., 2011. Remote sensing reflectance of Pomeranian lakes and the Baltic. Oceanologia 53 (4), 959-970. https://doi.org/10.5697/oc.53-4.959.
- 12. Gartner, J.W., Cheng, R.T., Wang, P.F., Richter, K., 2001. Laboratory and field evaluations of the LISST-100 instrument for suspended particle size determinations. Mar. Geol. 175, 199-219. https://doi.org/10.1016/S0025-3227(01)00137-2
- 13. Jennings, B.R., Parslow, K., 1988. Particle size measurement: the equivalent spherical diameter. Proc. Roy. Soc. London A419, 137-149. https://doi.org/10.1098/rspa.1988.0100
- 14. Jonasz, M., 1987. Nonspherical sediment particles: Comparison of size and volume distributions obtained with an optical and resistive particle counter. Mar. Geol. 78, 137-142. https://doi.org/10.1016/0025-3227(87)90072-7
- 15. Kahru, M., Savchuk, O., Elmgren, R., 2007. Satellite measurements of cyanobacterial bloom frequency in the Baltic Sea: interannual and spatial variability. Mar. Ecol. Prog. Ser. 343, 15-23. https://doi.org/10.3354/meps06943
- 16. Karp-Boss, L., Azevedo, L., Boss, E., 2007. LISST-100 measurements of phytoplankton size distribution: Evaluation of the effects of cell shape. Limnol. Oceanogr. 5, 396-406. https://doi.org/10.4319/lom.2007.5.396
- 17. Keller, M.D., Matrai, P.A., 1998. Optical Characteristics of Pollen Grains in Coastal Waters of the Gulf of Marine. West Boothbay Harbor, Bigelow Laboratory for Ocean Sciences 6.
- 18. Krężel, A., Cyberski, J., 1993. Influence of the Vistula River on suspended matter content in the Gulf of Gdańsk waters. Stud. Mat. Oceanol. 64, 27-39.
- 19. Menden-Deuer, S., Lessard, E.J., Satterberg, J., 2001. Effect of preservation on dinoflagellate and diatom cell volume and consequences for carbon biomass predictions. Mar. Ecol. Prog. Ser. 222, 41-50. https://doi.org/10.3354/meps222041
- 20. Pawlik, M., Ficek, D., 2016. Pine pollen grains in coastal waters of the Baltic Sea. Oceanol. Hydrobiol. Stud. 45 (1), 35-41. https://doi.org/10.1515/ohs-2016-0004
- 21. Pempkowiak, J., Bełdowski, J., Pazdro, K., Staniszewski, A.,Leipe, T., Emeis, K., 2002. The contribution of fine sediment fraction to the fluffy layer suspended matter (FLSM). Oceanologia 44 (4), 513-527. Pohl, Fr., 1937. Die Pollenerzeugung der Windblütler. Beih. Bot. Zbl. Abt. A, und Fruchtknotenbau. I. Beih. Bot. Cbl., Bd. 46.
- 22. Reinart, A., Kutser, T., 2006. Comparison of different satellite sensors in detecting cyanobacterial bloom events in the Baltic Sea.
- 23. Remote Sens. Environ. 102, 74-85. https://doi.org/10.1016/j.rse.2006.02.013
- 24. Reynolds, R.A., Stramski, D., Wright, V.M., Woźniak, S.B., 2010.
- 25. Measurements and characterization of particle size distributions in coastal waters. J. Geophys. Res. 115, C08024. https://doi.org/10.1029/2009JC005930
- 26. Rienecker, E., Ryan, J., Blum, M., Dietz, C., Coletti, L., Marin, R., Bissett, W.P., 2008. Mapping phytoplankton in situ using a laser scattering sensor. Limnol. Oceanogr. - Methods 6, 153-161. https://doi.org/10.4319/lom.2008.6.153
- 27. Rzadkowolski, C.E., Thornton, D.C.O., 2012. Using laser scattering to identify diatoms and conduct aggregation experiments. European J. Phycol. 47 (1), 30-41. https://doi.org/10.1080/09670262.2011.646314
- 28. Schiewer, U., 2008. Ecology of Baltic coastal water. Springer Verlag.
- 29. Serra, T., Colomer, J., Cristina, X.P., Vila, X., Arellano, J.B., Casamitjana, X., 2001. Evaluation of laser in situ scattering instrument for measuring concentration of phytoplankton, Purple sulfur bacteria, and suspended inorganic sediments in lakes. J. Environ. Eng. 127 (11), 1023-1030. https://doi.org/10.1061/(ASCE)0733-9372(2001)127:11(1023)
- 30. Serra, T., Colomer, J., Baserba, C., Soler, M., Casamitjana, X., 2002. Quantified distribution of diatoms during the stratified period of Boadella reservoir. Hydrobiologia 489, 235-244.
- 31. Szefer, P., 2002. Metals, metalloids and radionuclides in the Baltic Sea ecosystem. Elsevier, Amsterdam—London—New York—Oxford—Paris—Shannon—Tokyo.
- 32. Turner, A., Millward, G.E., 2002. Suspended particles: their role in estuarine biogeochemical cycles. Estuar. Coast. Shelf Sci. 55, 857-883. https://doi.org/10.1006/ecss.2002.1033
- 33. Woźniak, B., Bradtke, K., Darecki, M., Dera, J., Dudzińska-Nowak, J., Dzierzbicka-Głowacka, L., Ficek, D., Furmańczyk, K., Kowalewski, M., Krężel, A., Majchrowski, R., Ostrowska, M., Paszkuta, M., Stoń-Egiert, M., Stramska, M., Zapadka, T., 2011. SatBaltic — A Baltic environmental satellite remote sensing system — an ongoing project in Poland part 2: practical applicability and preliminary results. Oceanologia 53 (4), 925-958. https://doi.org/10.5697/oc.53-4.925
- 34. Wodehouse, R., 1935. Pollen grains. Their structure, identification and significance in science and medicine. McGraw-Hill Book Company, Inc., New York and London, 574 pp.
- 35. Zarauz, L., Irigoien, X., 2008. Effects of Lugol’s fixation on the size structure of natural nano-microplankton samples, analyzed by means of an automatic counting method. J. Plankton Res. 30, 1297-1303. https://doi.org/10.1093/plankt/fbn084
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c8a8b0dc-b900-4092-95f2-291759b26a4e