PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multivariate function approximation using sparse grids and High Dimensional Model Representation – a comparison

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Przybliżanie funkcji wielu zmiennych przy użyciu sieci rzadkich i High Dimensional Model Representation – porównanie
Języki publikacji
EN
Abstrakty
EN
In many areas of science and technology, there is a need for effective procedures for approximating multivariate functions. Sparse grids and cut-HDMR (High Dimensional Model Representation) are two alternative approaches to such multivariate approximations. It is therefore interesting to compare these two methods. Numerical experiments performed in this study indicate that the sparse grid approximation is more accurate than the cut-HDMR approximation that uses a comparable number of known values of the approximated function unless the approximated function can be expressed as a sum of high order polynomials of one or two variables.
PL
W wielu obszarach nauki i technologii potrzebne są efektywne metody aproksymacji funkcji wielu zmiennych. Sieci rzadkie i cut-HDMR (High Dimensional Model Representation) są dwoma alternatywnymi podejściami do aproksymacji funkcji wielu zmiennych. Interesujące jest zatem porównanie tych dwóch metod. Eksperymenty numeryczne przeprowadzone w ramach niniejszych badań wskazują, że aproksymacja sieciami rzadkimi jest bardziej dokładna niż aproksymacja cut-HDMR wykorzystująca porównywalną liczbę znanych o ile aproksymowana funkcja nie może być wyrażona jako suma wielomianów wysokiego stopnia jednej lub dwóch zmiennych.
Rocznik
Strony
97--107
Opis fizyczny
Bibliogr. 29 poz., wz., wykr.
Twórcy
autor
  • Institute of Teleinformatics, Faculty of Physics, Mathematics and Computer Science, Cracow University of Technology, Poland
Bibliografia
  • [1] Donoho D.L., Aide-Memoire. High-Dimensional Data Analysis: The Curses and Blessings of Dimensionality, presented at the Mathematical Challenges of 21st Century, Los Angeles 2000.
  • [2] Barton R.R., Metamodels for Simulation Input-output Relations, [in:] Proceedings of the 24th Conference on Winter Simulation, New York 1992, 289-299.
  • [3] Barton R.R., Metamodeling: a state of the art review, [in:] Simulation Conference Proceedings, 1994. Winter, 1994, 237-244.
  • [4] Shan S., Wang GG., Metamodeling for High Dimensional Simulation-Based Design Problems, J. Mech. Des., vol. 132, no. 5, 051009-1-051009-11, May 2010.
  • [5] Jin R., Chen W., Simpson T.W., Comparative studies of metamodelling techniques under multiple modelling criteria, Struct Multidisc Optim, vol. 23, no. 1, Dec. 2001, 1-13.
  • [6] Klimke A., Pye C.J., Sparse Grid Meta-Models for Model Updating, [in:] Proceedings of the IMAC-XXVII, Orlando 2009.
  • [7] Schoendorf J., Rabitz H., Li G., A fast and accurate operational model of ionospheric electron density, Geophysical Research Letters, vol. 30, no. 9, 2003.
  • [8] Geremia J., Weiss E., Rabitz H., Achieving the laboratory control of quantum dynamics phenomena using nonlinear functional maps, Chemical Physics, vol. 267, no. 1–3, Jun. 2001, 209-222.
  • [9] Zabaras N., An Information-Theoretic Multiscale Framework With Applications to Polycrystalline Materials, Cornell University, Ithaca NY, Materials Process Design and Control Laboratory, Feb. 2010.
  • [10] Chowdhury R., Rao B.N., Assessment of high dimensional model representation techniques for reliability analysis, Probabilistic Engineering Mechanics, vol. 24, no. 1, Jan. 2009, 100-115.
  • [11] Bieniasz L.K., Rabitz H., High-Dimensional Model Representation of Cyclic Voltammograms, Anal. Chem., vol. 78, no. 6, Mar. 2006, 1807-1816.
  • [12] Balu A.S., Rao B.N., Reliability analysis using high dimensional model representation for mixed uncertain variables, IOP Conf. Ser.: Mater. Sci. Eng., vol. 10, no. 1, Jun. 2010, 012014.
  • [13] Smolyak S., Quadrature and interpolation formulas for tensor products of certain classes of functions, Soviet Mathematics, Doklady, vol. 4, 1963, 240-243.
  • [14] Gordon W.J., Blending-Function Methods of Bivariate and Multivariate Interpolation and Approximation, SIAM Journal on Numerical Analysis, vol. 8, no. 1, Mar. 1971, 158-177.
  • [15] Delvos F.J., Schempp W.J., Boolean Methods in Interpolation and Approximation. Longman Higher Education, 1989.
  • [16] Shen J., Wang L.-L., Sparse Spectral Approximations of High-Dimentional Problems Based on Hyperbolic Cross, SIAM J. Numer. Anal., vol. 48, no. 3, Jul. 2010, 1087-1109.
  • [17] Sobol I.M., Sensitivity Estimates for Nonlinear Mathematical Models, Mathematical Modelling and Computational Experiment, vol. 1, no. 4, 1993, 407-414.
  • [18] Rabitz H., Aliş Ö.F., General foundations of high‐dimensional model representations, Journal of Mathematical Chemistry, vol. 25, no. 2–3, Jun. 1999, 197-233.
  • [19] Rabitz H., Aliş Ö.F., Shorter J., Shim K., Efficient input-output model representations, Computer Physics Communications, vol. 117, no. 1-2, Mar. 1999, 11-20.
  • [20] Li G., Wang S.-W., Rabitz H., High Dimensional Model Representation (HDMR): Concepts and Applications, 2000.
  • [21] Quadling D.A., Lagrange’s Interpolation Formula, The Mathematical Gazette, vol. 50, no. 374, Dec. 1966, 372.
  • [22] Barthelmann V., Novak E., Ritter K., High dimensional polynomial interpolation on sparse grids, Advances in Computational Mathematics, vol. 12, no. 4, Mar. 2000, 273-288.
  • [23] Griebel M., Sparse grids and related approximation schemes for higher dimensional problems, 2005.
  • [24] Wang X., On the approximation error in high dimensional model representation, [in:] Proceedings of the 40th Conference on Winter Simulation, Miami, Florida 2008, 453-462.
  • [25] Sobol I.M., Theorems and examples on high dimensional model representation, Reliability Engineering & System Safety, vol. 79, no. 2, Feb. 2003, 187-193.
  • [26] Runge C., Über empirische Funktionen und die Interpolation zwischen äquidistanten Ordinaten, Zeitschrift für Mathematik und Physik, vol. 46, 1901, 224-243.
  • [27] Stoyanov M., User Manual: TASMANIAN Sparse Grids, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, Tennessee 37831, ORNL REPORT, Aug. 2013.
  • [28] Sobol I.M., On the distribution of points in a cube and the approximate evaluation of integrals, USSR Computational Mathematics and Mathematical Physics, vol. 7, no. 4, 1967, 86-112.
  • [29] Joe S., Kuo F.Y., Remark on Algorithm 659: Implementing Sobol’s Quasirandom Sequence Generator, ACM Trans. Math. Softw., vol. 29, no. 1, Mar. 2003, 49-57.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c8a36ce3-46cf-4104-89c8-4424d3d5abe6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.