PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kinetic modelling of NO heterogeneous radiation-catalytic oxidation on the TiO2 surface in humid air under the electron beam irradiation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Theoretical study of NOx removal from humid air by a hybrid system (catalyst combined with electron beam) was carried out. The purpose of this work is to study the possibility to decrease energy consumption for NOx removal. The kinetics of radiation catalytic oxidation of NO on the catalyst TiO2 surface under electron beam irradiation was elaborated. Program Scilab 5.3.0 was used for numerical simulations. Influential parameters such as inlet NO concentration, dose, gas flow rate, water concentration and catalyst contents that can affect NOx removal efficiency were studied. The results of calculation show that the removal effiiency of NOx might be increased by 8–16% with the presence of a catalyst in the gas irradiated field.
Czasopismo
Rocznik
Strony
235--240
Opis fizyczny
Bibliogr. 10 poz., rys.
Twórcy
autor
  • The Joint Institute for Power and Nuclear Research – Sosny, National Academy of Sciences of Belarus, P. O. Box 119, 220109 Minsk, Republic of Belarus
autor
  • Institute of Nuclear Chemistry and Technology, 16 Dorodna Str., 03-195 Warsaw, Poland, Tel.: +48 22 504 1368, Fax: +48 22 811 1532
  • Institute of Nuclear Chemistry and Technology, 16 Dorodna Str., 03-195 Warsaw, Poland, Tel.: +48 22 504 1368, Fax: +48 22 811 1532
Bibliografia
  • 1. Chmielewski, A. G., Licki, J., Pawelec, A., Tymiński, B., & Zimek, Z. (2004). Operational experience of the industrial plant for electron beam flue gas treatment. Radiat. Phys. Chem., 71(1/2), 441–444. DOI: 10.1016/j.radphyschem.2004.03.020.
  • 2. Sun, Y., Zwolińska, E., & Chmielewski, A. G. (2016). Abatement technologies for high concentrations of NOx and SO2 removal from exhaust gases: A review. Crit. Rev. Environ. Sci. Technol., 46(2), 119–142.DOI: 10.1080/10643389.2015.1063334.
  • 3. Minachev, X. M., & Antoshin, G. V. (1973). Radiation-catalytic activity of oxygen. Proceedings of the Russian Academy of Sciences, 9, 52–60 (in Russian).
  • 4. Hakoda, T., Matsumoto, K., Mizuno, A., Kojima, T., & Hirota, K. (2008). Catalytic oxidation of xylene in air using TiO2 under electron beam irradiation. Plasma Chem. Plasma Process., 28, 25–37. DOI: 10.1007/s11090-007-9114-y.
  • 5. Cubillos Sanabria, H. A. (2011). Heterogeneous photocatalytic oxidation of NOx under indoor conditions: experimental and simulation study. MSc thesis. Eindhoven University of Technology, Department of the Built Environment.
  • 6. Yu, Q. L., Ballari, M. M., & Brouwers, H. J. H. (2010). Indoor air purification using heterogeneous photocatalytic oxidation. Part II: Kinetic study. Appl. Catal. B-Environ., 99, 58–65. DOI: 10.1016/j.apcatb.2010.05.032.
  • 7. Gladkyi, A. Yu., & Aristov, Yu. I. (1998). High radiation-chemical yield of separated electron-hole pairs in the radiolysis of dispersed magnesium oxides in presence of N2O or H2. High Energy Chemistry (Moscow), 32(3), 179–184 (in Russian).
  • 8. Baranov, V. F. (1974). Electron radiation dosimetry. Moscow: Atomizdat (in Russian).
  • 9. Licki, J., Chmielewski, A. G., Pawelec, A., Zimek, Z., & Witman, S. (2014). Electron beam treatment of exhaust gas with high NOx concentration. Phys. Scripta, 161, 014067(1-4). DOI: 10.1088/0031-8949/2014/T161/014067.
  • 10. Chmielewski, A. G., Sun, Y., Zimek, Z., Bułka, S., & Licki, J. (2002). Mechanism of NOx removal by electron beam process in the presence of scavengers.Radiat. Phys. Chem., 65, 397–403. http://dx.doi.org/10.1016/S0969-806X(02)00340-7.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c8a34de1-49a0-490e-be13-997a2f0b0b3f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.