PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structural, magnetic and adsorption characteristics of magnetically susceptible carbon sorbents based on natural raw materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article comprises synthesis of magnetically susceptible carbon sorbents based on bio raw materials – beet pulp. The synthesis was performed by one- and two-step methodology using FeCl3 as an activating agent. X-ray diffraction methods showed an increase in the distance between graphene layers to 3.7 Å in biocarbon synthesized by a two-step technique and a slight decrease in inter-graphene distance to 3.55 Å for biocarbon synthesized by an one-step technique. In both magnetically susceptible samples, the Fe3O4 magnetite phase was identified. Biocarbon synthesized by a two-step technique is characterized by a microporous structure in which a significant volume fraction (about 35%) is made by pores of 2.2 and 5 nm radius. In the sample after a one-step synthesis, a significant increase in the fraction of pores with radii from 5 to 30 nm and a decrease in the proportion of pores with radii greater than 30 nm can be detected. Based on the analysis of low-angle X-ray scattering data, it is established that carbon without magnetic activation has the smallest specific area of 212 m2∙сm–3, carbon after one-stage synthesis has a slightly larger area of 280 m2∙сm–3, and after two-stage synthesis has the largest specific surface area in 480 m2∙сm–3. The adsorption isotherms of blue methylene have been studied. Biocarbon ob-tained by two-step synthesis has been shown to have significantly better adsorption properties than other synthesized biocarbons. Isotherms have been analysed based on the Langmuir model.
Wydawca
Rocznik
Tom
Strony
160--168
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Lviv Polytechnic National University, Department of Ecology and Sustainable Environmental Management, Stepana Bandery Str., 12, Lviv, Lviv Oblast, 79000, Ukraine
  • Lviv Polytechnic National University, Department of Ecology and Sustainable Environmental Management, Stepana Bandery Str., 12, Lviv, Lviv Oblast, 79000, Ukraine
autor
  • Czestochowa University of Technology, Faculty of Electrical Engineering, Częstochowa, Poland
  • Czestochowa University of Technology, Faculty of Electrical Engineering, Częstochowa, Poland
  • Lviv Polytechnic National University, Department of Ecology and Sustainable Environmental Management, Stepana Bandery Str., 12, Lviv, Lviv Oblast, 79000, Ukraine
autor
  • Ivan Franko National University of Lviv, Faculty of Physics, Lviv, Ukraine
Bibliografia
  • ABIOUE A.M., ANI F.N. 2015. Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review. Renewable and Sustainable Energy Reviews. Vol. 52 p. 1282–1293. DOI 10.1016/ j.rser.2015.07.129.
  • APAEV B.A. 1973. Fazoviy mahnitnyy analiz splavov [Phase magnetic analysis of alloys]. Мoskva. Metallurhiya pp. 280.
  • BESTANI B., BENDERDOUCHE N., BENSTAALI B., BELHAKEM M., ADDOU A. 2008. Methylene blue and iodine adsorption onto an activated desert plant. Bioresource Technology. Vol. 99. Iss. 17 р. 8441–8444. DOI 10.1016/j.biortech.2008.02.053.
  • BUHAENKO I.F. 2007. Obshchaya tekhnolohiya otrasli. Nauchnie osnovy tekhnolohii sakhara. Ch.st 1. Uchebnik dlya studentov vuzov [General technology of the industry. Scientific basis of sugar technology. Part 1. Textbook for university students]. Sankt Petersburg: Giord, Ao. ISBN 978-5-98879-025-9 pp. 512.
  • COEY J.M.D. 2010. Magnetism and magnetic materials. Cambridge. Cambridge Univ. Press. ISBN 9780521816144 pp. 625.
  • DOBELE G., DIZHBITE T., GIL M.V., VOLPERTS A., CONTENO T.A. 2012. Production of nanoporous carbons from wood processing wastes and their use in supercapacitors and CO2 capture. Biomass and Bioenergy. Vol. 46. p. 145–154. DOI 10.1016/j.biombioe.2012.09.010.
  • GONZALEZ-GARCIA P. 2018. Activated carbon from ligninocellulosics precursors: A review of the synthesis methods, characterization techniques and applications. Renewable and Sustainable Energy Reviews. Vol. 82 p. 1393–1414.
  • GOYA G.F., BERQUO T.S., FONSECA F.S. 2003. Static and dynamic magnetic properties of spherical magnetite nanoparticles. Journal of Applied Physics. Vol. 94. Iss. 5 p. 3520–3528. DOI 10.1063/1.1599959.
  • HSIEH С.-Т., TENG Н. 2000. Influence of mesopore volume and adsorbate size on adsorption capacities of activated carbons in aqueous solutions. Carbon. Vol. 38 p. 863–869.
  • HUBIN S.P., KOKSHAROV YU.A., KHOMUTOV H.B., YURKOV H.YU. 2005. Mahnitnye nanochasticy: metody polucheniya, stroeniya i svoystva [Magnetic nanoparticles: methods of obtaining, structure and properties]. Uspehi khimii. Vol. 74. Iss. 6 p. 539–574. DOI 10.1070/RC2005v074n06ABEH 000897.
  • IOANNIDOU O., ZABANIOTOU A. 2007. Agricultural residues as precursors for activated carbon production – A review. Renewable and Sustainable Energy Reviews. Vol. 11 p. 1966–2005. DOI 10.1016/j.rser.2006.03.013.
  • KADIRVELU K., KAVIPRIYA M., KARTHIKA C., RADHIKA M., VENNILAMANI N., PATTABHI S. 2003. Utilization of various agricultural wastes for activated carbon preparation and application for removal of dyes and metal ions from aqueous solutions. Bioresource Technology. Vol. 87 p. 129–132. DOI 10.1016/s0960-8524(02)00201-8.
  • KIM B.C., LEE J., UM W., KIM J., JOO J., LEE J.H., KWAK J.H., KIM J.H., LEE C., LEE H., ADDLEMAN R.S., HYEON T., GU M.B., KIM J. 2011. Magnetic mesoporous materials for removal of environmental wastes. Journal of Hazardous Materials. Vol. 192. Iss. 3 p. 1140–1147. DOI 10.1016/j.jhazmat.2011. 06.022.
  • KONDIR A.I., BORYSYUK A.K., PAZDRIY I.P., SHWACHKO S.H. 2004. Zastosuvannya mahnitometra dlya fazovoho analizu specialnikh staley ta splaviv [Application of a magnetometer for phase analysis of special steels and alloys]. Vibracii v tekhnike i tekhnolohiyakh. No. 2 (34) p. 41–43.
  • LIE W.-J., TIAN K., HE Yr., JIANG H., YU H.-Q. 2014. High-yield harvest of nanofibers/mesoporous carbon composite by pyrolysis of waste biomass and its application for high durability electrochemical energy storage. Environmental Science and Technology. Vol. 48. Iss. 23. p. 13951–13959. DOI 10.1021/es504184c.
  • LOWELL S., SHIELDS J.E. 1998. Powder surface area and porosity. Kluwer (reprinted – London: Chapman & Hall) 3rd ed. ISBN 9780412396908 pp. 252.
  • OLIVEIRA L.C.A., PEREIRA E., GUIMARAES I.R., VALLONE A., PE-REIRA M., MESQUITA J.P., SAPAG K. 2009. Preparation of activated carbons from coffee husks utilizing FeCl3 and ZnCl2 as activating agents. Journal of Hazardous Materials. Vol. 165. Iss. 1–3 p. 87–94. DOI 10.1016/j.jhazmat.2008.09.064.
  • PAKHOVCHISHIN S.V., CHERNISH I., HRYZENKO V. 1991. Nekotorye ohranicheniya primeneniya indikatornoho metoda pri izuchenii poverkhnosti chastic hrafita [Some restrictions on the use of the indicator method for studying the surface of graphite particles]. Kolloidnyj Zhurnal. Vol. 53. Iss. 2 p. 284–289.
  • SAMAR K., MUTHANNA J. 2012. Optimization of preparation conditions for activated carbons from date stones using response surface methodology. Powder Technology. Vol. 224 p. 101–108. DOI 10.1016/j.powtec.2012.02.037.
  • SPICHAK V.V., VRATSKIY A.M. 2012. Suchasni napryamki vykoristanna ta utylizacii buryakovoho zhomu [Modern directions of use and utilization of beet pulp]. Visnyk cukrovykiv Ukrainy. No. 2 (69) p. 13–15.
  • THEYDAN S.K., AHMED M.J. 2012. Adsorption of methylene blue onto biomass-based activated carbon by FeCl3 activation: Equilibrium, kinetics, and thermodynamic studies. Journal of Analytical and Applied Pyrolysis. Vol. 97 p. 116–122. DOI 10.1016/J.JAAP.2012.05.008.
  • VERVIKISHKO D.E., YANILKIN I.V., DOBELE G.V.,VOLPERTS A., ATAMANYUK I.N., SAMETOV A.A., SHKOLNIKOV E.I. 2015. Activated carbon for supercapacitor electrodes with an aqueous electrolyte. High temperature. Vol. 53. Iss. 5 p. 758–764. DOI 10.1134/S0018151X15050272.
  • WANG T., LIANG L., WANG R., JIANG Y., LIN K., SUN J. 2012. Magnetic mesoporous carbon for efficient removal of organic pollutants. Adsorption. Vol. 18. Iss. 5–6 p. 439–444. DOI 10.1007/s10450-012-9430-2.
  • XIAO-FEI T., SHAO-BO L., YUN-GUO L., YAN-LING G., GUANG-MING Z., XINJIANG H., SHAO-HENG L., LU-HUA J. 2017. Biochar as potential sustainable precursors for activated carbon production: Multiple applications in environmental protection and energy storage. Bioresource Technology. Vol. 227 p. 359–372. DOI 10.1016/j.biortech.2016.12.083.
  • YAHYA M.A., AL-QODAHB Z., NGAH C.W.Z. 2015. Agricultural bio-waste as potential precursors for activated carbon production: A review. Renewable and Sustainable Energy Reviews. Vol. 46 p. 218–235. DOI 10.1016/j.rser.2015. 02.051.
  • YANG H., OGAWA T., HASEGAWA D., TAKAHASHI M. 2008. Synthesis and magnetic properties of monodisperse magnetite nanocubes. Journal of Applied Physics. Vol. 103. Iss. 7 p. 07D526-1–07D526-3. DOI 10.1063/1.2833820.
  • ZHU X., FENG Q., YUCHEN L., MATERA D., GANG WU, SHICHENG ZH., JIAN-MIN CH. 2016. Controllable synthesis of magnetic carbon composites with high porosity and strong acid resistance from hydrochar for efficient removal of organic pollutants: An overlooked influence. Carbon. Vol. 99 p. 338–347. DOI 10.1016/j.carbon.2015.12.044.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c89ce075-368a-4fc1-bd6c-11c0ce78b474
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.