PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Novel (Ag,Y) doped TiO2 plasmonic photocatalyst with enhanced photocatalytic activity under visible light

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nano-sized Y- Ag doped and co-doped TiO2 particles were synthesized using the sol–gel method and Ti(OBu)4 as TiO2 precursor. Their structural and optical properties were examined by scanning electron microscopy (SEM), XRD, thermogravimetric-differential thermal analysis (TG-DTA), FT-IR and UV-vis absorption spectroscopies. The photocatalytic activity of these materials was investigated for the photodegradation of methylene blue (MB) as a model reaction under visible light irradiation. Ground state diffuse reflectance absorption studies reveal that both Y and Ag dopant cause deviations of the band gap to higher energies attesting that co-doping the TiO2 with Y and Ag could enhance the photocatalytic activity by delaying the electron–hole recombination by means of higher energy band gaps. Co-doping TiO2 at a level of 4% (Y, Ag) samples leads to a significant decrease in the crystallite size of photocatalyst and containing both anatase and Ag/AgCl components. However, the high photocatalytic performance is attributed to an efficient electron-hole pairs separation at the photocatalyst interfaces in addition to localized surface plasmon resonance of Ag particles. The development of these visible light- activated nanocatalysts has the potential of providing environmentally benign routes for water treatment.
Rocznik
Strony
745--759
Opis fizyczny
Bibliogr. 55 poz., rys.
Twórcy
  • University of Sfax-Faculty of Science-Laboratory CI, Sfax, Tunisia,
  • University of Sfax-Faculty of Science-Laboratory CI, Sfax, Tunisia
  • University of Sfax-Faculty of Science-Laboratory CI, Sfax, Tunisia
Bibliografia
  • AHMED, S., RASUL, M.G., MARTENS, W.N., BROWN, R., HASHI, M. A., 2010. Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments. Desalination 261, 3-18.
  • AN, C.H., WANG, S.T., SUN, Y.G., ZHANG, Q.H., ZHANG, J., SIU, C., WANG, C.Y., FANG, J.Y., 2016. Plasmonic silver incorporated silver halides for efficient photocatalysis. J. Mater. Chem. A. 4, 4336–4352.
  • ATCHUDAN, R., JEBAKUMAR, I.E.T.N., PERUMAL, S., SHANMUGAN, M., LEE, Y.R., 2017. Direct solvothermal synthesis of zinc oxide nanoparticle decoratedgraphene oxide nanocomposite for efficient photodegradation of azo-dyes. J. Photochem. Photobiol. A: Chem. 337, 100–111.
  • BALLATO, J., LEWIS, J.S., HOLLOWAY, P., 1999. Synthesis and luminescence properties of mesostructured thin films activated by in-situ formed trivalent rare earth ion complexes. MRS Bull. 24, 51–56.
  • BINITHA, N., NARAYANAN, Z.Y., RANJANA, K., SOUMINI, C., SANKARAN, S., FEMINA, K.S., VINEETHA, M., 2009. Photodegradation of methylorange over zirconia doped TiO2 using solar energy. Eur. J. Sci. Res. 28, 566–571.
  • BO-KYUNG, C., WOONG-KI, C., SOO-JIN P., MIN-KANG S., 2018. One-pot synthesis of Ag-TiO2/nitrogen-doped graphene oxide nanocomposites and its photocatalytic degradation of methylene blue. J. Nanosc. Nanotech. 18, 6075–6080.
  • BOUATTOUR, S., KALLEL, W., DO REGO, A.M.B., FERREIRA, L.F.V., MACHADO, I.F., BOUFI, S., 2010. Li-doped nanosized TiO2 powder with enhanced photocalatylic acivity under sunlight irradiation. Appl. Organomet. Chem. 24, 692–699.
  • CAI, B., WANG, J., GAN, S., HAN, D., WU, Z., NIU, L., 2014. A distinctive red Ag/AgCl photocatalyst with efficient photocatalytic oxidative and reductive activities. J. Mater. Chem. A. 2, 5280-5286.
  • CUI, W., WANG, H., LIU, L., LIANG, Y., MCEVOY, J.G., 2013. Plasmonic Ag@AgCl-intercalated K4Nb6O17 composite for enhanced photocatalytic degradation of Rhodamine B under visible light. Appl. Surf. Sci. 283, 820-827.
  • FERREIRA, L.F.V., CABRAL, P.V., ALMEIDA, P., OLIVEIRA, A.S., REIS, M.J., BOTELHODO, R.A.M., 1998. Ultraviolet/visible absorption, luminescence and X-ray photoelectron spectroscopic studies of a rhodamine dye covalently bound to microcrystalline cellulose. Macromolecules 31, 3936–3944.
  • FREITAS, R.G., SANTANNA, M.A., PEREIRA, E.C., 2014. Preparation and characterization of TiO2 nanotube arrays in ionic liquid for water splitting. Electrochim. Acta. 136, 404–411.
  • GAYA, U.I., ABDULLAHA, A.H., 2008. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. J. Photochem. Photobiol. C. 9, 1–12.
  • GUO, J., MA, B., YIN, A., FAN, K., DAI, W., 2012. Highly stable and efficient Ag/AgCl@TiO2 photocatalyst: preparation, characterization, and application in the treatment of aqueous hazardous pollutants. J. Hazard. Mater. 211-212, 77-82.
  • HAJJAJI, A., ELABIDI, M., TRABELSI, K., ASSADI, A.A., BESSAIS, B., RTIMI, S., 2018. Bacterial adhesion and inactivation on Ag decorated TiO2-nanotubes under visible light: Effect of the nanotubes geometry on the photocatalytic activity. Coll. Sur. B: Biointer. 170, 92–98.
  • HOFFMANN, M.R., MARTIN, S.T., CHOI, W.I., BAHNEMANN, D.W., 1995. Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69-96.
  • HUANG, Y.B., WANG, Q., LIANG, J., WANG, X., 2016a. Soluble metal-nanoparticle-decorated porous coordination polymers for the homogenization of heterogeneous catalysis. J. Am. Chem. Soc. 138, 10104–10107.
  • HUFNER, S., 1978. Optical spectra of transparent rare earth compounds. Academic Press. New York.
  • HUIJUN, L., ZHICHAO, J., HUCHENG, Z., XIAOBING, W., JIANJI, W., 2018. Photocatalysis oxidation activity regulation of Ag/TiO2 composites evaluated by the selective oxidation of Rhodamine B. App. Sur. Sci. 422, 1-10.
  • HUNAG, Y.B., SHEN, M., WANG, X., HUANG, P., CHEN, R., LIN, Z.J., CAO, R., 2016b. Water-medium C-H activation over a hydrophobic perfluoroalkane-decorated metal-organic framework platform. J. Catal. 333, 1–7.
  • HUNAG, Y.B., SHEN, M., WANG, X., SHI, P.C., LI, H., CAO, R., 2015. Hierarchically micro- and mesoporous metalorganic framework-supported alloy nanocrystals as bifunctional catalysts: toward cooperative catalysis. J. Catal. 330, 452–457.
  • IBHADON, A.O., FITZPATRICK, P., 2013. Heterogeneous photocatalysis: recent advances and applications. Catalysts 3, 189-218.
  • JEBAKUMAR, I.E.T.N., ATCHUDAN, R., SETHURAMAN, M.G., LEE, Y.R., 2016. Reductive degradation of carcinogenic azo dyes using anacardiumoccidentaletesta derived silver nanoparticles. J. Photochem. Photobiol. B: Biol. 162, 604–610.
  • JIANG, R., LI, B., FANG, C., WANG, J., 2014. Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications. Adv. Mater. 26, 5274-5309.
  • JINGXIANG, L., BEI, C., JIAGUO, Y., 2017. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. App. Sur. Sci. 392, 658–686
  • JINGXIANG, L., SHUOQI, Q., DIFA, X., CHUANJIA, J., BEI, C., 2018. Direct evidence and enhancement of surface plasmon resonance effect on Ag-loaded TiO2 nanotube arrays for photocatalytic CO2 reduction. App. Sur. Sci. 434, 423-432.
  • JUN, L., JIMMY, C.Y., 1998. An investigation on photocatalytic activities of mixed TiO2-rare earth oxides for the oxidation of acetone in air. J. Photochem. Photobiol. A: Chemistry 116, 63-67.
  • KOWALSKA, E., MAHANEY, O.P., ABE, R., OHTANI, B., 2010. Visible-light-induced photocatalysis through surface plasmon excitation of gold on titania surfaces. Phys. Chem. Chem. Phys. 12, 2344–2355.
  • LAVANYA, T., SATHEESH, K., DUTTA, M., JAYA, N.V., FUKATA, N., 2014. Superior photocatalytic performance of reduced graphene oxide wrapped electrospun anatase mesoporous TiO2 nanofibers. J. Alloys. Compd. 615, 643–650.
  • LI, F., LI, Q., KIM, H., 2013. Spray deposition of electros pun TiO2 nanoparticles with self-cleaning and transparent properties onto glass. Appl. Surf. Sci. 276, 390–396.
  • LIANG, M.S., KHAW, C.C., LIU, C.C., CHIN, S.P., WANG, J., LI, H., 2013. Synthesis and characterisation of thin-film TiO2 dye-sensitised solar cell. Ceram. Int. 39, 1519–1523.
  • LIANG, Y., LIN, S., HU, J., LIU, L., MCEVOY, J.G., CUI, W., 2014. Facile hydrothermal synthesis of nanocomposite Ag@AgCl/K2Ti4O9 and photocatalytic degradation under visible light irradiation. J. Mol. Catal. A Chem. 383-384, 231-238.
  • LIANG, Y., WANG, H., LIU, L., CUI, W., 2015. Facile synthesis of Ag@AgCl plasmonic photocatalyst and its photocatalytic degradation under visible light. Rare. Metal. Mater. Engin. 44(5), 1088-1093.
  • LIU, W., CHEN, D., YOO, S.H., CHO, S.O., 2013. Hierarchical visible light-response Ag/AgCl@TiO2 plasmonic photocatalysts for organic dye degradation. Nanotechnology. 24, 405706-405712.
  • MA, X.C., DAI, Y., YU, L., HUANG, B.B., 2016. Energy transfer in plasmonic photocatalytic composites. Light: Science & Applications 5, 16017.
  • MOLINARI, R., PIRILLO, F., FALCO, M., LODDO, V., PALSIMANO, L., 2004. Photocatalytic degradation of dyes by using a membrane reactor. Chem. Eng. Process. 43, 1103–1104.
  • MURUGAN, K., SUBASRI, R., RAO, T.N., GANDHI, A.S., MURTY, B.S., 2013. Synthesis, characterization and demonstration of self-cleaning TiO2 coatings on glass and glazed ceramic tiles. Prog. Org. Coat. 76, 1756–1760.
  • NAKATA, K., OCHIAI, T., MURAKAMIA, T., FUJISHIMA, A., 2012. Photoenergy conversion with TiO2 photocatalysis: New materials and recent applications. Electrochim. Acta. 84, 103–111.
  • PARIDA, K.M., SAHU, N., 2008. Visible light induced photocatalytic activity of rare earth titania nanocomposite. J. Mol. Catal. A: Chem. 287, 151-158.
  • PHAM, M.H., DINH, C.T., VUONG, G.T., TA, N.D., DO, T.O., 2014. Visible light induced hydrogen generation using a hollow photocatalyst with two cocatalysts separated on two surface sides. Phys. Chem. Chem. Phys. 16, 5937-5941.
  • QI, L., YU, J., LIU, G., WONG, P.K., 2014. Synthesis and photocatalytic activity of plasmonic Ag@AgCl composite immobilized on titanate nanowire films. Catal. Today. 224, 193-199.
  • QINGHONG, Z., LIAN, G., JINGKUN, G., 2000. Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis. Appl. Catal. B: Environ. 26, 207-215.
  • RUIRUI, L., ZHIJIANG, J., JING, W., JINJUN, Z., 2018. Solvothermal synthesized Ag-decorated TiO2/sepiolite composite with enhanced UV–vis and visible light photocatalytic activity. Micropor. Mesopor. Mater. 266, 268-275.
  • SANCHEZ, E., LOPEZ, T., GOMEZ, R., BOKHIMI, MORALES, A., NOVARO, O., 1996. Synthesis and characterization of sol–gel Pt/TiO2 catalyst. J. Solid. Stat. Chem. 122, 309-314.
  • SHAHMOTADI, B., MALEK, A., BYRAPPA, K., 2011. Photocatalytic degradation of amaranth and brilliant blue FCF dyes using in situ modified tungsten doped TiO2 hybrid nanoparticle. Catal. Sci. Technol. 1, 1216-1223.
  • SIMMONS, E.L., 1975. Diffuse reflectance spectroscopy: a comparison of the theories. App. Opt. 14, 1380–1386.
  • SLIMEN, H., LACHHEB, H., QOURZAL, S., ASSABBANE, A., HOUAS, A., 2015. The effect of calcination atmosphere on the structure and photoactivity of TiO2 synthesized through an unconventional doping using activated carbon. J. Environ. Chem. Eng. 3, 922–929.
  • TAYADE, R.J., SUROLIYA, P.K., KULKARNI, R.G., JASRA, R.V., 2007. Photocatalytic degradation of dyes and organic contaminants in water using nanocrystal- line anatase and rutile TiO2. Sci. Techn. Adv. Mater. 8, 455–462.
  • TURKTEN, N.; CINAR, Z., 2017. Photocatalytic decolorization of azo dyes on TiO2 : Prediction of mechanism via conceptual DFT. Catal. Today. 287, 169–175.
  • VARGAS, D.X.M., ROSA, J.R.D.L., ORTIZ, C.J.L., RAMIREZ, A.H., ESCAMILLA, G.A.F., GARCIA, C.D., 2015. Photocatalytic degradation of trichloroethylene in a continuous annular reactor using Cu-doped TiO2 catalysts by sol–gel synthesis. App. Cata. B: Environ. 179, 249-261.
  • WANG, D., LI, Y., PUMA, G.L., WANG, C., WANG, P., ZHANG, W., WANG, Q., 2013. Ag/AgCl@helical chiral TiO2 nanofibers as a visible-light driven plasmon photocatalyst. Chem. Commun. 49, 10367-10369.
  • WEN, J., LI, X., LI, H., MA, S., HE, K., XU, Y., FANG, Y., LIU, W., GAO, Q., 2015. Enhanced visible-light H2 evolution of gC3H4 photocatalysts via the synergetic effect of amorphous NiS and cheap metel-free carbon black nanoparticles as cocatalysts. Appl. Surf. Sci. 358, 204–212.
  • XUE, X., JI, W., MAO, Z., MAO, H., WANG, Y., WANG, X., RUAN, W., ZHAO, B., LOMBARDI, J.R., 2012. Raman investigation of nanosized TiO2: effect of crystallite size and quantum confinement. J. Phys. Chem. C. 116, 8792–8797.
  • YAO, X., LIU, X., 2014. One-pot synthesis of Ag/AgCl@SiO2 coreeshell plasmonic photocatalyst in natural geothermal water for efficient photocatalysis under visible light. J. Mol. Catal. A Chem. 393, 30-38.
  • YIN, H., WANG, X., WANG, L., NIE, Q., ZHANG, Y., YUAN, Q., WU, W., 2016. Ag/AgCl modified self-doped TiO2 hollow sphere with enhanced visible light photocatalytic activity. J. All. Comp. 657, 44-52.
  • ZHOU, J., ZHANG, Y., ZHAO, X.S., RAY, A.K., 2006. Photodegradation of benzoic acid over metal-doped TiO2. Indus. Engin. Chem. Res. 45, 3503–3511.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c8968afd-8e49-4a8d-88cc-97a89c89b91e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.