PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High-performance quasi one-dimensional mirrors of mechanical waves built of periodic and aperiodic structures

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work studied the reflectance for quasi one-dimensional phononical structures. In composite superlattices, the thickness of the layers, their arrangement and selection of constituent materials with appropriate properties such as the density and velocity of mechanical waves propagation allows for the creation of a phononic band gap (PhBG) phenomenon. PhBG is characterized by high reflectance of the mechanical wave incident on the analyzed structure, which means that the wave does not propagate in the superlattice. The paper proposes periodic and aperiodic structures characterized by a wide range of reflectance for the ultrasonic frequencies of mechanical waves and shows how the change the thickness of the layer affects the properties of the analyzed structures.
Rocznik
Strony
19--24
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
autor
  • Institute of Mechanics and Machine Design Fundamentals Czestochowa University of Technology Częstochowa, Poland
autor
  • Institute of Mechanics and Machine Design Fundamentals Czestochowa University of Technology Częstochowa, Poland
Bibliografia
  • [1] Armenise, M.N., Campanella, C.E., Ciminelli, C., Dell’Olio F., & Passaro V.M.N. (2010). Phononic and photonic band gap structures: modelling and applications. Physics Procedia, 1(3), 357-364, DOI: 10.1016/j.phpro.2010.01.047.
  • [2] Sanchis, L., Cervera, F., Sánchez-Dehesa, J., Sánchez-Pérez, J.V., Rubio C., & Mártinez-Sala R. (2001). Reflectance properties of two-dimensional sonic band-gaps crystals. Journal of the Acoustical Society of America, 109, 2598-2605.
  • [3] Nowak, P., & Krawczyk, M. (2010). Phononic band gaps in one-dimensional phononic crystals with nanoscale periodic corrugations at interfaces. FDTD and PWM simulations. Computational Method in Science and Technology, 16(1), 85-95.
  • [4] Torres, M., Montero de Espinosa, F.R., & Aragon, J.L. (2001). Ultrasonic wedges for elastic wave bending and splitting without requiring a full band gap. Physical Review Letters, 86, 4282-4285.
  • [5] Cervera, F., Sanchis, L., Sanchez-Perez, J.V., Martinez-Sala, R., Rubio, C., Meseguer, F., Lopez, C., Caballero, D., & Sanchez-Dehesa, J. (2002). Refractive acoustic devices for airborne sound. Physical Review Letters, 88, 23902-23906.
  • [6] Sanchis, L., Hakansson, A., Cervera, F., & Sanchez-Dehesa, J. (2003). Acoustic interferometers based on two-dimensional arrays of rigid cylinders in air. Physical Review, 67, 35422-1-35422-11.
  • [7] Khelif, A., Deymier, P.A., Djafari-Rouhani, B., Vasseur, J.O., & Dobrzynski, L. (2003). Twodimensional phononic crystal with tunable narrow pass band: application to a waveguide with selective frequency. Journal of Applied Physics, 94, 1308-1311.
  • [8] Liang, B., Yuan, B., & Cheng, J.-C. (2009). Acoustic diode: rectification of acoustic energy flux in one-dimensional systems. Physical Review Letters, 103, 104301-104305.
  • [9] Garus, S., & Sochacki, W. (2017). One dimensional phononic FDTD algorithm and Transfer Matrix Method implementation for Severin aperiodic multilayer. Journal of Applied Mathematics and Computational Mechanics, 16(4), 17-27.
  • [10] Garus, S., Sochacki, W., & Bold, M. (2018). Comparison of phononic structures with piezoelectric 0.62PB(MG1/3NB1/3)O3-0.38PBTIO3 defect layers. Engineering Mechanics 2018, Svratka, Czech Republic, 229-232, DOI: 10.21495/91-8-229.
  • [11] Garus, S., & Szota, M. (2018). Occurence of characteristic peaks in phononic multilayer structures. Revista de Chimie, 69(3), 735-738.
  • [12] Wang, Y., Song, W., Sun, E., Zhang, R., & Cao, W. (2014). Tunable passband in one-dimensional phononic crystal containing a piezoelectric 0.62Pb(Mg1/3Nb2/3)O3-0.38PbTiO3 single crystal defect layer, Physica E: Low-dimensional Systems and Nanostructures 60, 37-41.
  • [13] Villa-Arango, S., Torres Villa, R., Kyriacou, P.A., Lucklum, R. ( ). Cavity resonance sensor with disposable analyte container for point of care testing. IEEE Sensors Journal, 16, 17, 6727-6732, Sept.1, 2016. DOI: 10.1109/JSEN.2016.2584240.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c89153b0-3c12-4716-94de-97b008f920ab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.