PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of ultrasonic pretreatment on the flotation behavior of galena with and without the presence of pyrite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Utilizing the ultrasonic pretreatment, flotation tests, ICP-OES, and XPS analysis, the effect of the different ultrasonic pretreatment methods on the flotation behavior of galena were investigated. The flotation recovery of galena was improved for pretreated single galena sample, which is mainly attributed to the efficient removal of the oxidized components and contaminants on the surface of galena by the acoustic cavitation. However, the flotation recovery of galena was decreased when pretreated mixture sample of galena and pyrite was used. Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES) and X-ray photoelectron spectroscopy (XPS) results reveal that ultrasonic pretreatment facilitates the conversion of PbS to Pb(OH)2 and PbSO4. Besides, the flotation recovery of galena was affected to varying degrees when the galena was mixed with the pyrite of the different particle sizes in the ultrasonic pretreatment process. The reason is that the change in the surface area ratio of these two minerals affects the electrochemical reaction rate between galena and pyrite.
Rocznik
Strony
611--624
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
autor
  • School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
  • Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083, China
autor
  • School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
  • Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083, China
autor
  • School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
  • Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083, China
autor
  • School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
  • Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083, China
autor
  • School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
  • Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083, China
Bibliografia
  • ALDRICH, C., FENG, D., 1999. Effect of ultrasonic preconditioning of pulp on the flotation of sulphideores. Minerals Engineering, 12,701-707.
  • AWATEY, B., SKINNER, W., ZANIN, M., 2013. Effect of particle size distribution on recovery of coarse chalcopyrite and galena in Denver flotation cell, Canadian Metallurgical Quarterly, 52 (4): 465-72.
  • BICAK, O., OZTURK, Y., OZDEMIR, E., EKMEKCI, Z., 2018. Modelling effects of dissolved ions in process water on flotation performance. Minerals Engineering, 128, 84-91.
  • CAO, Q.B., CHENG, J.H., FENG, Q.C., WEN, S.M., LUO, B., 2017. Surface cleaning and oxidative effects of ultrasonication on the flotation of oxidized pyrite. Powder Technology, 311, 390-397.
  • CELIK, M.S., 1989. Effect of ultrasonic pretreatment on the floatability of coal and galena. Separation Science and Technology, 24(14), 1159-1166.
  • CHEN, J.H., SUN, C.Y., 2005. Effect of ultrasonic cleaning on floatability of Galena, Sphalerite and Pyrite. Mining & Metallurgy, 14(4), 13-16.
  • CHENG, X., IWASAKI, I., 1992. Pulp potential and its implications to sulfide flotation. Mineral Processing and Extractive Metallurgy Review, 11(4),187-210.
  • EKMEKCI, Z., DEMIREL, H., 1997. Effects of galvanic interaction on collectorless flotation behaviour of chalcopyrite and pyrite. International Journal of Mineral Processing, 52, 31–48.
  • ESLAMI ANDARGOLI, M.B., JANNESAR MALAKOOTI, S., DOULATI ARDEJANI, F., ABDOLLAHI, H., 2012. Effect of galvanic contact on the floatability of galena in the presence and absence of a collector. International Journal of Mining Science and Technology, 22, 629-632.
  • EMIN, C., SELCUK, O., 2009. Effect of ultrasound on separation selectivity and efficiency of flotation. Minerals Engineering, 22, 1209-1217.
  • FAN, X., ROWSON, N.A., 2000. Fundamental investigation of microwave pretreatment on the flotation of massive ilmenite ores. Developments in Chemical Engineering and Mineral Processing, 8, 167-182.
  • FENG, B., ZHANG, W., GUO, Y., WANG, T., LUO, G., WANG, H., HE. G., 2019. The flotation separation of galena and pyrite using serpentine as depressant. Powder Technology, 342: 486-90.
  • FANG, S., XU, L.X., WU, H.Q., XU, Y.B., WANG, Z.J., SHU, K.Q., HU, Y.H., 2020. Influence of surface dissolution on sodium oleate adsorption on ilmenite and its gangue minerals by ultrasonic treatment, Applied Surface science, 500:144038.
  • GARDNER, J., WOODS, R., 1979. A study of the surface oxidation of galena using cyclic voltammetry. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 100, 447-459.
  • GURPINAR, G., SONMEZ, E., BOZKURT, V., 2004. Effect of ultrasonic treatment on flotation of calcite, barite and quartz. Mineral Processing and Extractive Metallurgy, 113, 91-95.
  • GUNGOREN, C., Ozdemir, O., Ozkan, S.G., 2017. Effects of temperature during ultrasonic conditioning in quartz-amine flotation, Physicochemical Problems of Mineral Processing, 53(2), 687-698.
  • HAMILTON, I., WOODS, R., 1981. An investigation of surface oxidation of pyrite and pyrrhotite by linear potential sweep voltammetry. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 118,327-343.
  • HUGHES, M., SOLUTION, A.E., 1972. Chemistry. Book reviews: the chemical statics and kinetics of solutions, Science, 178.
  • JONES, D.A. KINGMAN, S.W., WHITTLES, D.N., LOWNDES, I.S., 2007. The influence of microwave energy delivery method on strength reduction in ore samples. Chemical Engineering and Processing: Process Intensification, 46, 291-299.
  • KURSUN, H., A study on the utilization of ultrasonic pretreatment in zinc flotation, 2014. Separation Science and Technology, 49, 2975-2980.
  • KINGMAN, S.W., JACKSON, K., BRADSHAW, S.M., ROWSON, N.A., GREENWOOD, R., 2004. An investigation into the influence of microwave treatment on mineral ore comminution. Powder Technology, 146, 176-184.
  • KANG, W., XIN, X., 2008. Study of the effect of ultrasonic pretreatment on the surface composition and the flotation performance of high-sulfur coal. Fuel Processing Technology, 89,1337-1344.
  • KANG, W.Z., XUN, H.X., KONG, X.H., LI, M.M., 2009. Effects from changes in pulp nature after ultrasonic conditioning on high-sulfur coal flotation. Mining Science and Technoogy, 19, 498-502.
  • LU, D.F., LIU, J.J., CHENG, Z.Y., LI, X.D., XUE, Z.X., LI, S., ZHENG X.Y., WANG, Y.H., 2020. Development of an open-gradient magnetic separator in the aerodynamic field, Physicochemical Problems of Mineral Processing, 56(2),325-337.
  • LV, W.B., CHEN, J., MIN, F.F., HOU, B.H., LIU, C.F., 2020. Effect of ultrasonic pre-treatment on coal slime flotation, Physicochemical Problems of Mineral Processing, 56(1),173-183.
  • LV, P., LIU, Y., FENG, Q., et al, 2015. The Flotation Study of Jinchuan Nickel Sulfide Ores under Ultrasonication. Nonferrous Metals (Mineral Processing Section), 4, 34-38.
  • MAO, Y.Q., XIE, G.Y., LIANG, L., XIA, W.C., PENG, Y.L., 2019. Effects of ultrasonic treatment on the particle size, shape and ash content of fine coal, Physicochemical Problems of Mineral Processing, 55(3), 679-688.
  • MOSLEMI, H., SHAMSI, P., HABASHI, F., 2011. Pyrite and pyrrhotite open circuit potentials study: Effects on flotation. Mineral Engineering, 24, 1038-1045.
  • MAJIMA, H., 1969. How oxidation affects selective flotation of complex sulphideores. Canadian Metallurgy Quarterly, 8(3), 269-272.
  • NOWAK, P., LAAJALEHTO, K., KARTIO, I., 2000. A flotation related X-ray photoelectron spectroscopy study of the oxidation of galena surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 161, 447-460.
  • OZKAN, S.G.,2002. Beneficiation of magnesite slimes with ultrasonic pretreatment. Minerals Engineering, 15, 99-101.
  • OZKAN, S.G, KUYUMCU, H.Z., 2006. Investigation of mechanism of ultrasound on coal flotation. International Journal of Mineral Processing, 81(3), 201-203.
  • OZKAN, S.G., Kuyumcu, H.Z., 2007. Design of a flotation cell equipped with ultrasound transducers to enhance coal flotation. Ultrasonics Sonochemistry, 2007, 14(5), 639-645.
  • OZKAN, S.G., 2012. Effects of simultaneous ultrasonic treatment on flotation of hard coal slimes. Fuel, 93, 576-580.
  • QIN, W.Q., WANG, X.J., MA, L.Y., 2015. Effects of galvanic interaction between galena and pyrite on their flotation in the presence of butyl xanthate. Transactions of Nonferrous Metals Society of China, 25,3111-3118.
  • QIN, W.Q., WANG, X.J., MA, L.Y., et al, 2016. Electrochemical characteristics and collectorless flotation behavior of galena: With and without the presence of pyrite. Minerals Engineering, 74, 99-104.
  • RAO, S., FINCH, J., 1988. Galvanic interaction studies on sulphide minerals. Can. Metall. Q., 27, 253-259.
  • RAO, Y., NATARAJAN, K., 1989. Electrochemical effects of mineral-mineral interactions on the flotation of chalcopyrite and sphalerite. International Journal of Mineral Processing, 27, 279-293.
  • SUI, C.C., BRIENNE, S.H.R., RAMACHANDRA, S.R, et al, 1995. Metal ion production and transfer between sulphide minerals. Minerals Engineering, 8(12), 1523-1539.
  • SHU, K.Q., XU, L.H., WU, H.Q., WANG, Z.J., XU, Y.B., FANG, S., 2019. Influence of ultrasound pre-treatment on ilmenite surface chemical properties and collectors' adsorption behaviour. Ultrasonics -Sonochemistry, 57, 98-107.
  • SHU, K.Q., XU, L.H., WU, H.Q., FANG, S., WANG, Z.J., XU,Y.B., ZHANG, Z.Y., 2019. Effects of ultrasonic pretreatment on the flotation of ilmenite and collector adsorption, Minerals Engineering, 137, 124-132.
  • TRAHAR, W.J., SENIOR, G.D., SHANNON, L.K., 1994. Interactions between sulphide minerals-the collectorless flotation of pyrite. International Journal of Mineral Processing, 40, 287-321.
  • VIDELA, A.R., MORALES, R., JEAN, T.S., GAETE, L., VARGAS, Y., MILLER, J.D., 2016. Ultrasound treatment on tailings to enhance copper flotation recovery, Minerals Engineering, 99: 89–95
  • WATERS, K.E., ROWSON, N.A., GREENWOOD, R.W., WILLSMS, A.J., 2007. Characterizing the effect of microwave radiation on the magnetic properties of pyrite, Separation and purification technology, 56, 9-17.
  • XUE, Z.X., WANG Y.H., ZHENG, X.Y., LU, D.F., LI, X.D., 2020. Particle capture of special cross-section matrices in axial high gradient magnetic separation: A 3D simulation, Separation and Purification Technology,237, 63-75.
  • ZHENG, X.Y., SUN, N., WANG Y.H., LU, D.F., XUE, Z.X., 2020. Matching relation between matrix aspect ratio and applied induction for maximum particle capture in longitudinal high gradient magnetic separation, Separation and Purification Technology, 241, 66-87.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c88c416e-0c05-4d69-b70e-cd0886df578f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.