PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Intelligent sensing and monitoring : respiratory motion prediction for tumor following radiotherapy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a medical application of the intelligent sensing and monitoring, a new lung tumor motion prediction method for tumor following radiation therapy. An essential core of the method is accurate estimation of complex fluctuation of time-varying periodical nature of lung tumor motion. Such estimation is achieved by using a novel multiple time-varying seasonal autoregressive (TVSAR) model in which several windows of different time-lengths are used to calculate correlation based fluctuation of periodic nature in the motion. The proposed method provides the prediction as a combination of those based on different window lengths. Multiple regression (MR), multilayer perceptron (MLP) and support vector regression (SVR) are used to combine and the prediction performances are evaluated by using clinical lung tumor motion. The proposed methods with the combined predictions showed high accurate prediction and are superior to the single different predictions. The average errors of MR, MLP, and SVR were 0.8455,0.8507, and 0.7530 mm at 0.5 s ahead, respectively. The results are clinically sufficient and thus clearly demonstrate that the proposed TVSAR with an appropriate combination method is useful for improving the prediction performance.
Rocznik
Strony
331--342
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
autor
  • Graduate School of Engineering, Tohoku University, Sendai, Japan
autor
  • Tohoku University Graduate School of Medicine, Sendai, Japan
autor
  • Center for Information Technology in Education, Tohoku University, Japan
autor
  • Czech Technical University in Prague, Prague, Czech Republic
autor
  • Tohoku University Graduate School of Medicine, Sendai, Japan
autor
  • Tohoku University Graduate School of Medicine, Sendai, Japan
autor
  • Graduate School of Engineering, Tohoku University, Sendai, Japan
autor
  • Graduate School of Engineering, Tohoku University, Sendai, Japan
autor
  • Cyberscience Center, Tohoku University, Sendai, Japan
Bibliografia
  • [1] H. Onishi, T. Araki, H. Shirato, Y. Nagata, M. Hiraoka, K. Gomi, T. Yamashita, Y. Niibe, K. Karasawa, K. Hayakawa, Y. Takai, T. Kimura, Y. Hirokawa, A. Takeda, A. Ouchi, M. Hareyama, M. Kokubo, R. Hara, J. Itami, and K. Yamada, “Stereotactic hypofractionated high-dose irradiation for stage I nonsmall cell lung carcinoma: clinical outcomes in 245 subjects in a Japanese multiinstitutional study.,” Cancer, vol. 101, Oct. 2004, pp. 1623-31.
  • [2] P.J. Keall, G.S. Mageras, J.M. Balter, R.S. Emery, K.M. Forster, S.B. Jiang, J.M. Kapatoes, D.a. Low, M.J. Murphy, B.R. Murray, C.R. Ramsey, M.B. Van Herk, S.S. Vedam, J.W. Wong, and E. Yorke, ”The management of respiratory motion in radiation oncology report of AAPM Task Group 76.,” Medical physics, vol. 33, 2006, pp. 3874-900.
  • [3] Hokkaido University Hospital, Sapporo, Japan. http://www.huhp.hokudai.ac.jp
  • [4] P.R. Poulsen, B. Cho, D. Ruan, A. Sawant, and P.J. Keall, “Dynamic multileaf collimator tracking of respiratory target motion based on a single kilovoltage imager during arc radiotherapy.,” International Journal of Radiation Oncology, Biology, Physics, vol. 77, 2010, pp. 600-607.
  • [5] G.C. Sharp, S.B. Jiang, S. Shimizu, and H. Shirato, “Prediction of respiratory tumour motion for real-time image-guided radiotherapy,” Physics in edicine and Biology, vol. 49, 2004, pp. 425-440.
  • [6] D. Ruan and P. Keall, “Online prediction of respiratory motion: multidimensional processing with low-dimensional feature learning,” Physics in Medicine and Biology, vol. 55, 2010, pp. 3011-3025.
  • [7] K. Ichiji, M. Sakai, N. Homma, Y. Takai, and M. Yoshizawa, ”A Time Variant Seasonal ARIMA Model for Lung Tumor Motion Prediction,” Proc.of The 15th Int’l Symposium on Artificial Life and Robotics 2010, 2010, pp. 485-488.
  • [8] K. Ichiji, M. Sakai, N. Homma, Y. Takai, and M. Yoshizawa, “SU-HH-BRB-10: Adaptive Seasonal Autoregressive Model Based Intrafractional Lung Tumor Motion Prediction for Continuously Irradiation,” Medical Physics (Proc. of 52nd Annual Meeting of AAPM), vol. 37, 2010, pp. 3331-3332.
  • [9] N. Homma, M. Sakai, H. Endo, M, Mitsuya, Y.Takai, and M. Yoshizawa, “A New Motion Management Method for Lung Tumor Tracking RadiationTherapy,” WSEAS Trans. Systems, Vol. 8, No. 4, 2009, pp.471-480.
  • [10] K. Ichiji, M. Sakai, N. Homma, Y. Takai, M.Yoshizawa, and H. Takeda, “Period Prediction of Lung Tumor Motion Time Series for Tracking Radiation Therapy,” Proc. of SICE Tohoku-Chapter 45th Anniv. Workshop, 2009, pp. 23-26.(in Japanese)
  • [11] K. Ichiji, N. Homma, I. Bukovsky, M. Yoshizawa, “Intelligent sensing of biomedical signals —Lung tumor motion prediction for accurate radiotherapy,”Merging Fields Of Computational Intelligence And Sensor Technology (CompSens), 2011 IEEE Workshop On, 2011, pp. 35-41. doi:10.1109/MFCIST.2011.5949518
  • [12] C. Chang and C. Ling, “LIBSVM : a library for support vector machines,” ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm
  • 13] D. Ruan, “Kernel density estimation-based realtime prediction for respiratory motion,” Physics in Medicine and Biology, vol. 55, 2010, pp. 1311-1326.
  • [14] K. Demachi, H. Zhu, M. Ishikawa, and H. Shirato, “Predictive Simulation of tumor movement for Chasing Radiotherapy,” Journal of the Japan Society of Applied Electromagnetics and Mechanics, vol. 17, 2009, pp. 222-226. (in Japanese)
  • [15] A. Mizuguchi, K. Demachi, and M. Uesaka, “Establish of the prediction system of chest skin motion with SSA method,” International Journal of Applied Electromagnetics and Mechanics, vol.33, no. 3-4, 2010, pp. 1529-1533.
  • [16] D.W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” Journal of the Society for Industrial & Applied Mathematics, vol. 11, 1963, pp. 431-441.
  • [17] C. M. Bishop, “Pattern recognition and machine learning,” vol. 1. Springer New York, 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c882d4f6-9fdf-4d4a-8f4d-4c637b59fe75
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.