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Abstract

This paper presents a medical application of the intelligent sensing and monitoring, a new
lung tumor motion prediction method for tumor following radiation therapy. An essential
core of the method is accurate estimation of complex fluctuation of time-varying period-
ical nature of lung tumor motion. Such estimation is achieved by using a novel multiple
time-varying seasonal autoregressive (TVSAR) model in which several windows of dif-
ferent time-lengths are used to calculate correlation based fluctuation of periodic nature in
the motion. The proposed method provides the prediction as a combination of those based
on different window lengths. Multiple regression (MR), multilayer perceptron (MLP) and
support vector regression (SVR) are used to combine and the prediction performances are
evaluated by using clinical lung tumor motion. The proposed methods with the combined
predictions showed high accurate prediction and are superior to the single different pre-
dictions. The average errors of MR, MLP, and SVR were 0.8455,0.8507, and 0.7530 mm
at 0.5 s ahead, respectively. The results are clinically sufficient and thus clearly demon-
strate that the proposed TVSAR with an appropriate combination method is useful for
improving the prediction performance.

1 Introduction

Medical applications can be a good challenge
for the merge of computational intelligence and
sensor technology. Indeed, intelligent sensing of
useful pieces of medical information to diagnose
patients and optimizing medical instruments to

achieve the best treatment effect are needed in such
medical applications, just to name but a few.

In this paper, we focus on an intelligent predic-
tion of lung tumor motion for radiotherapy in which
continuously irradiating a sufficient dose to tumor
yields a better therapeutic effect and can shorten the
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duration of treatment. It is also required to decrease
an adverse effect by avoiding irradiation to normal
tissues located around the target tumor.

Observing the target tumor location and prop-
erly planning the irradiated field are necessary
for accurate, sufficient, and continuous irradiation.
Such desirable irradiation has already been used
and reported good treatment results which are even
equal to surgery [1]. However, activities of internal
organs such as lung and heart move a tumor during
the treatment fraction, and the tumor motion makes
it difficult to achieve precise setup and accurate con-
tinuous irradiation. Therefore, pre-planned static ir-
radiation area may not suitably cover the moving
target tumor. In addition, we cannot irradiate suffi-
cient therapeutic dose to patient because the thera-
peutic dose may also cover the surrounding healthy
tissues by the internal organ motion.

Recently, a basic concept of tumor-following
radiation therapy (TFRT) using real-time image
guided techniques has been proposed for continu-
ous irradiation to moving tumor such as lung tumor
[2]. In TFRT, the radiation beam is repositioned and
reshaped to adapt to the lung tumor motion and the
deformation in real-time. The irradiated area can
suitably be limited around the target tumor by beam
repositioning and reshaping. Thus, the exposure of
normal tissues to the dose can be decreased.

However, there are some challenges to be
solved for clinical use of TFRT, such as:

1. Real-time measurement for tumor position and
shape.

2. Compensation of inherent latencies in radiation
device.

The first technique, measurement of the tumor loca-
tion can be achieved by using an X-ray fluoroscopic
imaging system and implanted fiducial markers
[3]. However, real-time beam-repositioning has not
been developed yet because current radiotherapy
machines have mechanical and computational time
delays of up to about 1 s for controlling irradiation
field and image processing. The latency definitely
affects badly on the irradiation accuracy [4], and
thus must be compensated.

Typical solution for compensation of the la-
tency is to predict the lung tumor motion [5, 13,

7, 8]. Among them, a time-varying seasonal au-
toregressive (TVSAR) is an natural extension of the
general seasonal AR model to take into account of
a time varying nature of the respiratory motion, and
can achieve the best performance of highly accurate
prediction of less than 1 mm at 1 s ahead. We have
also reported that TVSAR can change the sensitivi-
ties to follow the time varying nature and the better
prediction performance can be achieved by the bet-
ter sensitivities [11]. In addition, the experimental
results have suggested that more appropriate use of
the sensitivities can further improve the prediction
performance.

In this paper, we further investigate the use of
the sensitivities of TVSAR predictions and propose
a new prediction method to improve the predic-
tion performance for TFRT. The proposed method
is composed of two parts:

1. A part consists of several predictors with differ-
ent settings

2. A part for combining the several predictions

The predictors to be combined produce each pre-
diction with different sensitivities and each can be
superior to others at specific situation. To obtain the
better prediction performance, the second part intel-
ligently combines those different predictions based
on the sensitivities.

The rest of this paper consists of as follows.
First we explain a lung tumor motion used for this
study in section II. Then seasonal prediction meth-
ods including the proposed method are described in
section III. Section IV shows the superiority of the
proposed method on prediction performance. Con-
clusions are provided in the last section.

2 Target Time Series: Lung Tumor
Motion

The three-dimensional time series of the pa-
tient’s lung tumor motion were obtained at
Hokkaido University [3] and relatively-clean three
data sets are used for this study (i.e., the data are
composed of regularly breathing). The time se-
ries of tumor location was observed as a location
of the golden fiducial marker implanted into around
the tumor, by using a kV X-ray fluoroscopic sys-
tem with sampling frequency 30 Hz. Observational
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noise and outliers were preliminarily reduced by us-
ing statistical and low-pass filters.

Let us henceforth consider a time series for each
spatial dimension of left to right (LR), cephalocau-
dal (CC), and anteroposterior (AP) axes as follows.

{y(1),y(2), · · · ,y(t), · · ·} (1)

where {y(t)} (mm) denotes a tumor coordinate at
discrete time t.

Figure 1 shows the three data sets of the lung tu-
mor motion. As is clear from this figure, the motion
has a periodical nature mainly caused by patient’s
respiration. Therefore, we can also consider that
the tumor motion is a kind of periodical function of
time. Then a sinusoidal periodic model of the time
varying nature of the motion can be given as

y(t) = A(t)cosϑ(t) (2)

where A(t) and ϑ(t) are instantaneous amplitude
and instantaneous phase at time t, respectively.
Note that, a temporal differentiation of the phase
is not constant, and changes with time in the model.
(i.e., dϑ(t)/dt ̸= const.).

Such quasi-periodical nature of the motion can
be confirmed by observing the period of the time
series. For example, period s(t) as time interval be-
tween a peak and next peak differs each other even
if the amplitude variation A(t) is sufficiently small
as shown in figure 2. An average s̄ of the period
is about 90 (3 s) for the three data sets used in this
paper.
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Figure 1. Three clinical data of 3D time series of
lung tumor motion for different treatment fractions.

These tumor motions have a quasi-periodical
nature of the average period s̄ = 90 (3 s).
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obtained as intervals among peaks of

cephalocaudal motion y2(t) of DATA #1. Peak to
peak periods are s2(t) = 87 at time t = 711 and

s2(t) = 82 at time t = 793, respectively.

3 Prediction Methods

In this section, prediction methods based on a
seasonal time series model are described. First we
introduce a traditional seasonal method and explain
its limitations on prediction of the lung tumor mo-
tion. Then, the seasonal prediction method is ex-
tended to take into account a time-varying nature of
the periodical motion. At last, we propose a new
prediction system by using the extended seasonal
prediction methods.

3.1 Seasonal Prediction Method: Seasonal
Autoregressive Model

Seasonal autoregressive integrated moving-
average (SARIMA) model is a general expression
of the time series which varies periodically (i.e., a
periodical function of time such as trigonometric
function).

The SARIMA model of the time series
{x(0),x(1), . . . ,x(t)} with period s can be expressed
as follows.

ϕ(B)Φ(Bs)(1−B)d(1−Bs)Dx(t) = θ(B)Θ(Bs)ε(t)
(3)

where d and D are respectively the order of lo-
cal and seasonal integrated components, ε(t) is the
Gaussian noise of which mean and variance are 0
and σ2, respectively, and B is a delay operator de-
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dal (CC), and anteroposterior (AP) axes as follows.

{y(1),y(2), · · · ,y(t), · · ·} (1)

where {y(t)} (mm) denotes a tumor coordinate at
discrete time t.

Figure 1 shows the three data sets of the lung tu-
mor motion. As is clear from this figure, the motion
has a periodical nature mainly caused by patient’s
respiration. Therefore, we can also consider that
the tumor motion is a kind of periodical function of
time. Then a sinusoidal periodic model of the time
varying nature of the motion can be given as

y(t) = A(t)cosϑ(t) (2)

where A(t) and ϑ(t) are instantaneous amplitude
and instantaneous phase at time t, respectively.
Note that, a temporal differentiation of the phase
is not constant, and changes with time in the model.
(i.e., dϑ(t)/dt ̸= const.).

Such quasi-periodical nature of the motion can
be confirmed by observing the period of the time
series. For example, period s(t) as time interval be-
tween a peak and next peak differs each other even
if the amplitude variation A(t) is sufficiently small
as shown in figure 2. An average s̄ of the period
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nature of the average period s̄ = 90 (3 s).
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3 Prediction Methods

In this section, prediction methods based on a
seasonal time series model are described. First we
introduce a traditional seasonal method and explain
its limitations on prediction of the lung tumor mo-
tion. Then, the seasonal prediction method is ex-
tended to take into account a time-varying nature of
the periodical motion. At last, we propose a new
prediction system by using the extended seasonal
prediction methods.

3.1 Seasonal Prediction Method: Seasonal
Autoregressive Model

Seasonal autoregressive integrated moving-
average (SARIMA) model is a general expression
of the time series which varies periodically (i.e., a
periodical function of time such as trigonometric
function).

The SARIMA model of the time series
{x(0),x(1), . . . ,x(t)} with period s can be expressed
as follows.

ϕ(B)Φ(Bs)(1−B)d(1−Bs)Dx(t) = θ(B)Θ(Bs)ε(t)
(3)

where d and D are respectively the order of lo-
cal and seasonal integrated components, ε(t) is the
Gaussian noise of which mean and variance are 0
and σ2, respectively, and B is a delay operator de-
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duration of treatment. It is also required to decrease
an adverse effect by avoiding irradiation to normal
tissues located around the target tumor.

Observing the target tumor location and prop-
erly planning the irradiated field are necessary
for accurate, sufficient, and continuous irradiation.
Such desirable irradiation has already been used
and reported good treatment results which are even
equal to surgery [1]. However, activities of internal
organs such as lung and heart move a tumor during
the treatment fraction, and the tumor motion makes
it difficult to achieve precise setup and accurate con-
tinuous irradiation. Therefore, pre-planned static ir-
radiation area may not suitably cover the moving
target tumor. In addition, we cannot irradiate suffi-
cient therapeutic dose to patient because the thera-
peutic dose may also cover the surrounding healthy
tissues by the internal organ motion.

Recently, a basic concept of tumor-following
radiation therapy (TFRT) using real-time image
guided techniques has been proposed for continu-
ous irradiation to moving tumor such as lung tumor
[2]. In TFRT, the radiation beam is repositioned and
reshaped to adapt to the lung tumor motion and the
deformation in real-time. The irradiated area can
suitably be limited around the target tumor by beam
repositioning and reshaping. Thus, the exposure of
normal tissues to the dose can be decreased.

However, there are some challenges to be
solved for clinical use of TFRT, such as:

1. Real-time measurement for tumor position and
shape.

2. Compensation of inherent latencies in radiation
device.

The first technique, measurement of the tumor loca-
tion can be achieved by using an X-ray fluoroscopic
imaging system and implanted fiducial markers
[3]. However, real-time beam-repositioning has not
been developed yet because current radiotherapy
machines have mechanical and computational time
delays of up to about 1 s for controlling irradiation
field and image processing. The latency definitely
affects badly on the irradiation accuracy [4], and
thus must be compensated.

Typical solution for compensation of the la-
tency is to predict the lung tumor motion [5, 13,

7, 8]. Among them, a time-varying seasonal au-
toregressive (TVSAR) is an natural extension of the
general seasonal AR model to take into account of
a time varying nature of the respiratory motion, and
can achieve the best performance of highly accurate
prediction of less than 1 mm at 1 s ahead. We have
also reported that TVSAR can change the sensitivi-
ties to follow the time varying nature and the better
prediction performance can be achieved by the bet-
ter sensitivities [11]. In addition, the experimental
results have suggested that more appropriate use of
the sensitivities can further improve the prediction
performance.

In this paper, we further investigate the use of
the sensitivities of TVSAR predictions and propose
a new prediction method to improve the predic-
tion performance for TFRT. The proposed method
is composed of two parts:

1. A part consists of several predictors with differ-
ent settings

2. A part for combining the several predictions

The predictors to be combined produce each pre-
diction with different sensitivities and each can be
superior to others at specific situation. To obtain the
better prediction performance, the second part intel-
ligently combines those different predictions based
on the sensitivities.

The rest of this paper consists of as follows.
First we explain a lung tumor motion used for this
study in section II. Then seasonal prediction meth-
ods including the proposed method are described in
section III. Section IV shows the superiority of the
proposed method on prediction performance. Con-
clusions are provided in the last section.

2 Target Time Series: Lung Tumor
Motion

The three-dimensional time series of the pa-
tient’s lung tumor motion were obtained at
Hokkaido University [3] and relatively-clean three
data sets are used for this study (i.e., the data are
composed of regularly breathing). The time se-
ries of tumor location was observed as a location
of the golden fiducial marker implanted into around
the tumor, by using a kV X-ray fluoroscopic sys-
tem with sampling frequency 30 Hz. Observational
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noise and outliers were preliminarily reduced by us-
ing statistical and low-pass filters.

Let us henceforth consider a time series for each
spatial dimension of left to right (LR), cephalocau-
dal (CC), and anteroposterior (AP) axes as follows.

{y(1),y(2), · · · ,y(t), · · ·} (1)

where {y(t)} (mm) denotes a tumor coordinate at
discrete time t.

Figure 1 shows the three data sets of the lung tu-
mor motion. As is clear from this figure, the motion
has a periodical nature mainly caused by patient’s
respiration. Therefore, we can also consider that
the tumor motion is a kind of periodical function of
time. Then a sinusoidal periodic model of the time
varying nature of the motion can be given as

y(t) = A(t)cosϑ(t) (2)

where A(t) and ϑ(t) are instantaneous amplitude
and instantaneous phase at time t, respectively.
Note that, a temporal differentiation of the phase
is not constant, and changes with time in the model.
(i.e., dϑ(t)/dt ̸= const.).

Such quasi-periodical nature of the motion can
be confirmed by observing the period of the time
series. For example, period s(t) as time interval be-
tween a peak and next peak differs each other even
if the amplitude variation A(t) is sufficiently small
as shown in figure 2. An average s̄ of the period
is about 90 (3 s) for the three data sets used in this
paper.
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3 Prediction Methods

In this section, prediction methods based on a
seasonal time series model are described. First we
introduce a traditional seasonal method and explain
its limitations on prediction of the lung tumor mo-
tion. Then, the seasonal prediction method is ex-
tended to take into account a time-varying nature of
the periodical motion. At last, we propose a new
prediction system by using the extended seasonal
prediction methods.

3.1 Seasonal Prediction Method: Seasonal
Autoregressive Model

Seasonal autoregressive integrated moving-
average (SARIMA) model is a general expression
of the time series which varies periodically (i.e., a
periodical function of time such as trigonometric
function).

The SARIMA model of the time series
{x(0),x(1), . . . ,x(t)} with period s can be expressed
as follows.

ϕ(B)Φ(Bs)(1−B)d(1−Bs)Dx(t) = θ(B)Θ(Bs)ε(t)
(3)

where d and D are respectively the order of lo-
cal and seasonal integrated components, ε(t) is the
Gaussian noise of which mean and variance are 0
and σ2, respectively, and B is a delay operator de-



334INTELLIGENT SENSING AND MONITORING . . .

fined by

Bkx(t) = x(t − k), k = 1,2, . . . (4)

Then, each components of the SARIMA model
are given as follows.

Autoregressive: ϕ(z) = 1−ϕ1z−·· ·−ϕpzp (5)

Moving-average: θ(z) = 1+θ1z+ · · ·+θqzq (6)

Seasonal AR: Φ(z) = 1−Φ1z−·· ·−ΦPzP

(7)

Seasonal MA: Θ(z) = 1−Θ1z+ · · ·+ΘQzQ

(8)

where p,q,P and Q are the orders of four compo-
nents in (5)-(8) respectively.

The SARIMA model can express various peri-
odical time series by designing the model settings.
In the followings, let us consider only the seasonal
autoregressive (SAR) component to avoid the over
fitting problem and to simplify the explanation of
the prediction method. That is, let p = q = Q = d =
D = 0 in (3), then for this special case, we can ob-
tain the following equation of seasonal autoregres-
sive (SAR) model for the time series y(t).

y(t) = ε(t)+
P

∑
ρ=1

Φρ · y(t −ρ× s) (9)

where P is the order of the SAR components, Φρ are
the SAR coefficients, and s are the constant period
of the time series.

Then, to substitute t + h for t, the prediction
equation by using (9) can be given by

ŷ(t +h|t) =
P

∑
ρ=1

Φρ · y(t +h−ρ× s) (10)

where ŷ(t+h|t) is the predicted value at future time
t+h with h samples ahead of current time t, and the
term h−ρ×s must be not longer than 0 for compos-
ing the prediction by using only past observations.

The equations (9) and (10) indicate that an es-
sential core of the general SAR depends on an as-
sumption that each values of the same phase highly
correlate each other. For example, periodical func-
tions such as cosine wave y(t) = cos(2π f t) of fre-
quency f = 1/s as shown in figure 3 can be per-
fectly predicted by using (10) with period s = 100.
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Figure 4. A chirp signal y(t) generated by using
time-varying period s(t). The general SAR in (10)
cannot predict this time series accurately. On the
other hand, time-varying SAR based prediction in

(20) can provide a predictability of this time series.

On the other hand, the general SAR model has
a limitation that it cannot express accurately a sea-
sonal time series with a time-varying period s(t).
Also, even if the time-varying period s(t) is known
instead of the constant period s, the phase ϑ(tc) at
the current time tc and the past phase ϑ(t−ρ×s(t))
do not always correspond to each other. For exam-
ple, if the target time series is a chirp signal y(t) in
which the period changes with time as shown in fig-
ure 4, the general SAR based equations (9) and (10)
are not applicable to the target time series. That
is, if the current time is tc = 350, then the current
amplitude, phase and period are y(tc) = −0.4315,
ϑ(tc) = 4.1537 rad and s(tc) = 170, respectively.
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Let us henceforth consider a time series for each
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where {y(t)} (mm) denotes a tumor coordinate at
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Figure 1 shows the three data sets of the lung tu-
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has a periodical nature mainly caused by patient’s
respiration. Therefore, we can also consider that
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varying nature of the motion can be given as

y(t) = A(t)cosϑ(t) (2)

where A(t) and ϑ(t) are instantaneous amplitude
and instantaneous phase at time t, respectively.
Note that, a temporal differentiation of the phase
is not constant, and changes with time in the model.
(i.e., dϑ(t)/dt ̸= const.).

Such quasi-periodical nature of the motion can
be confirmed by observing the period of the time
series. For example, period s(t) as time interval be-
tween a peak and next peak differs each other even
if the amplitude variation A(t) is sufficiently small
as shown in figure 2. An average s̄ of the period
is about 90 (3 s) for the three data sets used in this
paper.
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Figure 1. Three clinical data of 3D time series of
lung tumor motion for different treatment fractions.

These tumor motions have a quasi-periodical
nature of the average period s̄ = 90 (3 s).
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obtained as intervals among peaks of
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s2(t) = 82 at time t = 793, respectively.

3 Prediction Methods

In this section, prediction methods based on a
seasonal time series model are described. First we
introduce a traditional seasonal method and explain
its limitations on prediction of the lung tumor mo-
tion. Then, the seasonal prediction method is ex-
tended to take into account a time-varying nature of
the periodical motion. At last, we propose a new
prediction system by using the extended seasonal
prediction methods.

3.1 Seasonal Prediction Method: Seasonal
Autoregressive Model

Seasonal autoregressive integrated moving-
average (SARIMA) model is a general expression
of the time series which varies periodically (i.e., a
periodical function of time such as trigonometric
function).

The SARIMA model of the time series
{x(0),x(1), . . . ,x(t)} with period s can be expressed
as follows.

ϕ(B)Φ(Bs)(1−B)d(1−Bs)Dx(t) = θ(B)Θ(Bs)ε(t)
(3)

where d and D are respectively the order of lo-
cal and seasonal integrated components, ε(t) is the
Gaussian noise of which mean and variance are 0
and σ2, respectively, and B is a delay operator de-
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However, the equation (9) for the order ρ = 1 and
2 provides improper values as y(tc − ρ × s(tc)) =
−0.9220 and 0.7077 and ϑ(tc−ρ× s(tc)) = 3.4313
and 0.6843 [rad], respectively because the term
ρ× s in (9) and (10) are not references to the corre-
sponding phase.

In addition, the lung tumor motion has the time
varying nature as already shown in figure 2. There-
fore, the general SAR is unusable to accurately pre-
dict the lung tumor motion [9].

3.2 Extended Seasonal Prediction Method:
Time-varying SAR (TVSAR)

To overcome the limitation of the conven-
tional SAR, we have proposed a time-varying SAR
(TVSAR) model for prediction of the lung tumor
motion [7, 8]. The TVSAR equation corresponding
to (9) can be expressed as

y(t) = ε(t)+
P

∑
ρ=1

Φρ · y(t − rρ(t)). (11)

where rρ(t) are reference intervals of the ρth order
at time t.

The reference intervals rρ(t) can be defined as a
time interval between the current time and the cor-
responding past time which has the same phase to
the current one. In other words, if an instantaneous
phase ϑ(t) of the time series is given, the reference
intervals can be defined as follows.

rρ(t) = argmin
k>0

|ϑ(t)−2ρπ−ϑ(t − k)| (12)

Also, if the period is a constant, the reference
intervals can be expressed by

rρ(t) = ρ× s, if
dϑ(t)

dt
=

2π
s
. (13)

Note that, the constant reference interval shown
by (13) corresponds to that used in the general SAR
equations of (9) and (10).

Then, an ideal prediction equation of the time-
varying SAR is expressed by substituting t +h for t
as follows.

ŷ(t +h|t) =
P

∑
ρ=1

Φρ · y(t +h− rρ(t +h)) (14)

where the term h− rρ(t +h)≤ 0.

Note that, in (14), we have to know the refer-
ence interval at h samples ahead future, but it is un-
known in practice. In this case, we need to estimate
it. The estimation method will be explained in the
next section.

3.3 Online Estimation of Reference Inter-
vals: Correlation analysis-based tech-
nique

In TVSAR, the reference intervals rρ(t) are an
important factor to predict the lung tumor motion
accurately, and must be estimated on-line. In this
study, a correlation analysis is adopted to estimate
the reference intervals.

The correlation analysis based estimation pro-
cedure of the reference intervals is as follows.

1. Calculate a correlation function between two
time series subsets of current values and past
values. The correlation function is given as fol-
lows.

γ(t,k) =
1

w(t)

w(t)−1

∑
j=0

y(t − j) · y(t − k− j) (15)

where w(t) is a length of a rectangular window.
The window length is updated at each time by
using the latest estimation of the first order ref-
erence interval as

w(t) = ř1(t −1). (16)

2. The estimated reference intervals řρ(t) can be
obtained by the intervals between k = 0 and the
peak intervals of the correlation function γ(t,k)
corresponded to each seasonal order ρ:

řρ(t) = arg max
řρ(t−1)−l≤k≤řρ(t−1)+l

γ(t,k) (17)

where l defines the search area for the peak of
γ(t,k).

The initial condition is defined as follows.

řρ(1) = ρ× s̄, (18)

w(1) = ř1(1) (19)

where s̄ is the average of pre-observed time varying
periods of the time series. s̄ = 90 was used for this
study.
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duration of treatment. It is also required to decrease
an adverse effect by avoiding irradiation to normal
tissues located around the target tumor.

Observing the target tumor location and prop-
erly planning the irradiated field are necessary
for accurate, sufficient, and continuous irradiation.
Such desirable irradiation has already been used
and reported good treatment results which are even
equal to surgery [1]. However, activities of internal
organs such as lung and heart move a tumor during
the treatment fraction, and the tumor motion makes
it difficult to achieve precise setup and accurate con-
tinuous irradiation. Therefore, pre-planned static ir-
radiation area may not suitably cover the moving
target tumor. In addition, we cannot irradiate suffi-
cient therapeutic dose to patient because the thera-
peutic dose may also cover the surrounding healthy
tissues by the internal organ motion.

Recently, a basic concept of tumor-following
radiation therapy (TFRT) using real-time image
guided techniques has been proposed for continu-
ous irradiation to moving tumor such as lung tumor
[2]. In TFRT, the radiation beam is repositioned and
reshaped to adapt to the lung tumor motion and the
deformation in real-time. The irradiated area can
suitably be limited around the target tumor by beam
repositioning and reshaping. Thus, the exposure of
normal tissues to the dose can be decreased.

However, there are some challenges to be
solved for clinical use of TFRT, such as:

1. Real-time measurement for tumor position and
shape.

2. Compensation of inherent latencies in radiation
device.

The first technique, measurement of the tumor loca-
tion can be achieved by using an X-ray fluoroscopic
imaging system and implanted fiducial markers
[3]. However, real-time beam-repositioning has not
been developed yet because current radiotherapy
machines have mechanical and computational time
delays of up to about 1 s for controlling irradiation
field and image processing. The latency definitely
affects badly on the irradiation accuracy [4], and
thus must be compensated.

Typical solution for compensation of the la-
tency is to predict the lung tumor motion [5, 13,

7, 8]. Among them, a time-varying seasonal au-
toregressive (TVSAR) is an natural extension of the
general seasonal AR model to take into account of
a time varying nature of the respiratory motion, and
can achieve the best performance of highly accurate
prediction of less than 1 mm at 1 s ahead. We have
also reported that TVSAR can change the sensitivi-
ties to follow the time varying nature and the better
prediction performance can be achieved by the bet-
ter sensitivities [11]. In addition, the experimental
results have suggested that more appropriate use of
the sensitivities can further improve the prediction
performance.

In this paper, we further investigate the use of
the sensitivities of TVSAR predictions and propose
a new prediction method to improve the predic-
tion performance for TFRT. The proposed method
is composed of two parts:

1. A part consists of several predictors with differ-
ent settings

2. A part for combining the several predictions

The predictors to be combined produce each pre-
diction with different sensitivities and each can be
superior to others at specific situation. To obtain the
better prediction performance, the second part intel-
ligently combines those different predictions based
on the sensitivities.

The rest of this paper consists of as follows.
First we explain a lung tumor motion used for this
study in section II. Then seasonal prediction meth-
ods including the proposed method are described in
section III. Section IV shows the superiority of the
proposed method on prediction performance. Con-
clusions are provided in the last section.

2 Target Time Series: Lung Tumor
Motion

The three-dimensional time series of the pa-
tient’s lung tumor motion were obtained at
Hokkaido University [3] and relatively-clean three
data sets are used for this study (i.e., the data are
composed of regularly breathing). The time se-
ries of tumor location was observed as a location
of the golden fiducial marker implanted into around
the tumor, by using a kV X-ray fluoroscopic sys-
tem with sampling frequency 30 Hz. Observational
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noise and outliers were preliminarily reduced by us-
ing statistical and low-pass filters.

Let us henceforth consider a time series for each
spatial dimension of left to right (LR), cephalocau-
dal (CC), and anteroposterior (AP) axes as follows.

{y(1),y(2), · · · ,y(t), · · ·} (1)

where {y(t)} (mm) denotes a tumor coordinate at
discrete time t.

Figure 1 shows the three data sets of the lung tu-
mor motion. As is clear from this figure, the motion
has a periodical nature mainly caused by patient’s
respiration. Therefore, we can also consider that
the tumor motion is a kind of periodical function of
time. Then a sinusoidal periodic model of the time
varying nature of the motion can be given as

y(t) = A(t)cosϑ(t) (2)

where A(t) and ϑ(t) are instantaneous amplitude
and instantaneous phase at time t, respectively.
Note that, a temporal differentiation of the phase
is not constant, and changes with time in the model.
(i.e., dϑ(t)/dt ̸= const.).

Such quasi-periodical nature of the motion can
be confirmed by observing the period of the time
series. For example, period s(t) as time interval be-
tween a peak and next peak differs each other even
if the amplitude variation A(t) is sufficiently small
as shown in figure 2. An average s̄ of the period
is about 90 (3 s) for the three data sets used in this
paper.
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Figure 1. Three clinical data of 3D time series of
lung tumor motion for different treatment fractions.

These tumor motions have a quasi-periodical
nature of the average period s̄ = 90 (3 s).
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Figure 2. An example of time varying period s2(t)
obtained as intervals among peaks of

cephalocaudal motion y2(t) of DATA #1. Peak to
peak periods are s2(t) = 87 at time t = 711 and

s2(t) = 82 at time t = 793, respectively.

3 Prediction Methods

In this section, prediction methods based on a
seasonal time series model are described. First we
introduce a traditional seasonal method and explain
its limitations on prediction of the lung tumor mo-
tion. Then, the seasonal prediction method is ex-
tended to take into account a time-varying nature of
the periodical motion. At last, we propose a new
prediction system by using the extended seasonal
prediction methods.

3.1 Seasonal Prediction Method: Seasonal
Autoregressive Model

Seasonal autoregressive integrated moving-
average (SARIMA) model is a general expression
of the time series which varies periodically (i.e., a
periodical function of time such as trigonometric
function).

The SARIMA model of the time series
{x(0),x(1), . . . ,x(t)} with period s can be expressed
as follows.

ϕ(B)Φ(Bs)(1−B)d(1−Bs)Dx(t) = θ(B)Θ(Bs)ε(t)
(3)

where d and D are respectively the order of lo-
cal and seasonal integrated components, ε(t) is the
Gaussian noise of which mean and variance are 0
and σ2, respectively, and B is a delay operator de-
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An example of the correlation function and esti-
mated reference intervals is shown in figure 5. As is
clear from this figure, reference intervals of lung tu-
mor motion intricately change with time evolution.
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Figure 5. An example of the correlation function
γ(t,k), i = 2 and estimeted reference intervals

řρ(t),ρ = 1,2 for cephalocaudal-axis of DATA #1.

We can now estimate the reference intervals, but
we need future value of them for (14). According
to our previous study, prediction of these reference
intervals is difficult [10], so rρ(t + h) cannot be di-
rectly used for the prediction in (14). As a realis-
tic way, we simply extrapolated rρ(t + h) from the
current estimate řρ(t) with zero-order hold: r̂ρ(t +
h|t) = řρ(t). Then, (14) can be rewritten as

ŷ(t +h|t) =
P

∑
ρ=1

Φρ · y(t +h− řρ(t)). (20)

This special prediction equation of TVSAR can
achieve a higher accurate prediction compared to
the general SAR of (10) [7][8].

3.4 Prediction Performance by using Cor-
relation Analysis with Several Window
Lengths

The correlation analysis based method requires
a window length to be involved in (17) as a des-
ignable parameter. Then, it is considered that the
correlation function with shorter window length can
follow changes of reference intervals more quickly,
but at the same time, is more sensitive to noise. On
the other hand, the correlation function with longer
window length is more robust to noise, however, it
can only follow slower changes of the reference in-
terval.

For discussing the effect of the window length,
let us try to predict clinical lung tumor motion by
using several window lengths. Several window
lengths are used instead of (16) as follows.

wn(t) = αn · řn,1(t −1) (21)

where αn are constant coefficients to define win-
dow lengths, n = 1,2, . . . are indexes, and řn,1(t) is
the first order reference interval that estimated by
using the correlation function with wn(t − 1). The
window length coefficients were empirically set as
αn = 0.5,1 and1.5 for n = 1,2 and 3, respectively.

The prediction equation of each window length
wi

n(t) can be given by using řn,ρ(t) as

ŷn(t +h|t) =
P

∑
ρ=1

Φn,ρ · y(t +h− řn,ρ(t)). (22)

In this study, to avoid the over fitting problem, the
SAR coefficients and the SAR order are empirically
set as Φn,ρ = 1/P and P = 2, respectively.

As a benchmark method, zero order hold (ZOH)
is also tested. The prediction of ZOH equation is as
follows.

ŷZOH(t +h|t) = y(t) (23)

As is clear from the prediction equation, ZOH as-
sumes that future values at any h will be same as
the latest observed value. Also the result of ZOH
corresponds to the case of tumor-following irradia-
tion without compensation of the system latency.

3.4.1 Evaluation metric for prediction perfor-
mance

Mean absolute error (MAE) between real and
predicted values is used as a prediction performance
measure. MAE is calculated as follows.

MAE(h) =
1

te − ts

te

∑
t=ts

|e(t +h,h)| (24)

where te = 3000 and ts = 500 are the upper and
the lower bounds of evaluation interval respectively,
and e(t,h) is the Euclidean distance between real
and predicted values defined as follows.

e(t +h,h) =
√

∑
i
(ŷi(t +h|t)− yi(t +h))2 (25)
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noise and outliers were preliminarily reduced by us-
ing statistical and low-pass filters.

Let us henceforth consider a time series for each
spatial dimension of left to right (LR), cephalocau-
dal (CC), and anteroposterior (AP) axes as follows.

{y(1),y(2), · · · ,y(t), · · ·} (1)

where {y(t)} (mm) denotes a tumor coordinate at
discrete time t.

Figure 1 shows the three data sets of the lung tu-
mor motion. As is clear from this figure, the motion
has a periodical nature mainly caused by patient’s
respiration. Therefore, we can also consider that
the tumor motion is a kind of periodical function of
time. Then a sinusoidal periodic model of the time
varying nature of the motion can be given as

y(t) = A(t)cosϑ(t) (2)

where A(t) and ϑ(t) are instantaneous amplitude
and instantaneous phase at time t, respectively.
Note that, a temporal differentiation of the phase
is not constant, and changes with time in the model.
(i.e., dϑ(t)/dt ̸= const.).

Such quasi-periodical nature of the motion can
be confirmed by observing the period of the time
series. For example, period s(t) as time interval be-
tween a peak and next peak differs each other even
if the amplitude variation A(t) is sufficiently small
as shown in figure 2. An average s̄ of the period
is about 90 (3 s) for the three data sets used in this
paper.
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Figure 1. Three clinical data of 3D time series of
lung tumor motion for different treatment fractions.

These tumor motions have a quasi-periodical
nature of the average period s̄ = 90 (3 s).
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cephalocaudal motion y2(t) of DATA #1. Peak to
peak periods are s2(t) = 87 at time t = 711 and

s2(t) = 82 at time t = 793, respectively.

3 Prediction Methods

In this section, prediction methods based on a
seasonal time series model are described. First we
introduce a traditional seasonal method and explain
its limitations on prediction of the lung tumor mo-
tion. Then, the seasonal prediction method is ex-
tended to take into account a time-varying nature of
the periodical motion. At last, we propose a new
prediction system by using the extended seasonal
prediction methods.

3.1 Seasonal Prediction Method: Seasonal
Autoregressive Model

Seasonal autoregressive integrated moving-
average (SARIMA) model is a general expression
of the time series which varies periodically (i.e., a
periodical function of time such as trigonometric
function).

The SARIMA model of the time series
{x(0),x(1), . . . ,x(t)} with period s can be expressed
as follows.

ϕ(B)Φ(Bs)(1−B)d(1−Bs)Dx(t) = θ(B)Θ(Bs)ε(t)
(3)

where d and D are respectively the order of lo-
cal and seasonal integrated components, ε(t) is the
Gaussian noise of which mean and variance are 0
and σ2, respectively, and B is a delay operator de-
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Here i = {LR, CC, and AP} are indices for three-
dimensional space and corresponding to lateral-,
cephalocaudal-, and anteroposterior-axes, respec-
tively.

Note that, the Euclidean error and their MAE
both are functions of prediction horizon h.

3.4.2 Prediction performances of each model

TVSAR with the correlation analysis by using
each of window lengths α1 = 0.5,α2 = 1.0 and
α3 = 1.5, and zero-order hold (ZOH) are tested on
each of data sets shown in Figure 1. Then evalua-
tion results, MAEs as functions of prediction hori-
zon, are shown in figure 6.

According to this figure, the best performance
for each prediction horizon was achieved by the dif-
ferent prediction methods. For example, the least
MAE for 1 ≤ h ≤ 2 ahead prediction is clearly
achieved by ZOH. It is not a surprise because the
values temporally close to each other are similar to
each other in amplitude. However, MAE of ZOH
rapidly increases with prediction horizon h. At
h = 30, MAE of ZOH became over 5 mm. MAE
of ZOH indicates the importance of the prediction.

For short-term prediction at 3 ≤ h ≤ 9, TVSAR
with window length coefficient α1 = 0.5 is superior
to other predictions, but, MAE of α2 = 1 is the least
for 10 ≤ h ≤ 28. Then, TVSAR with α3 = 1.5 is
barely the least MAE for 28 ≤ h ≤ 30 and almost
similar to α2 = 1 for long-term prediction.
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Figure 6. Mean absolute errors (MAEs) of
TVSAR with the correlation analysis by using each

of window lengths α1 = 0.5,α2 = 1.0 and
α3 = 1.5, and zero-order hold (ZOH).

3.5 Proposed System: Combining Differ-
ent Predictions

It has been seen that reference intervals cal-
culated by different window lengths (coefficients)
have useful pieces of information for the specific
samples ahead predictions. In addition, even ZOH
can be useful for very short-term prediction. We
will then try to combine them to achieve better pre-
diction performance.

The proposed system is composed of two parts:

– Prediction part: Predict the tumor motion by us-
ing several prediction models.

– Combination part: Combine the different pre-
dicted values provided by the prediction part.

Final prediction (i.e., the system output) can be
expressed as follows.

ŷc(t +h|t) = fh (ŷ(t +h|t)) (26)

Here ŷc(t +h|t) is the combined prediction, fh(·) is
a combining function for specific prediction hori-
zon h, and ŷ(t + h|t) is an input vector (i.e., output
from the prediction part), respectively.

Figure 7 shows schematic diagram of the pro-
posed prediction system. In this study, the input
vector ŷ(t + h|t) consists of N predicted values of
TVSAR with several window lengths given by (22),
and prediction value of zero-order hold given as
ŷZOH(t +h|t) = y(t). Note that the multiple regres-
sion shown in this figure is just an example of the
combination part. Then, following methodologies
are used as a combining function fh(·) to produce
the predicted values.

3.5.1 Multiple Regression (MR)

A simple combination of the multiple regres-
sion method can be defined by

fh (ŷ(t +h|t)) = β0 +βN+1 · ŷZOH(t +h|t)

+
N

∑
n=1

βn · ŷn(t +h|t) (27)

where βn,n = 0,1, . . . ,N + 1 are regression coef-
ficients. The coefficients are estimated to reduce
the prediction error by using the least-squares tech-
nique [17].
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duration of treatment. It is also required to decrease
an adverse effect by avoiding irradiation to normal
tissues located around the target tumor.

Observing the target tumor location and prop-
erly planning the irradiated field are necessary
for accurate, sufficient, and continuous irradiation.
Such desirable irradiation has already been used
and reported good treatment results which are even
equal to surgery [1]. However, activities of internal
organs such as lung and heart move a tumor during
the treatment fraction, and the tumor motion makes
it difficult to achieve precise setup and accurate con-
tinuous irradiation. Therefore, pre-planned static ir-
radiation area may not suitably cover the moving
target tumor. In addition, we cannot irradiate suffi-
cient therapeutic dose to patient because the thera-
peutic dose may also cover the surrounding healthy
tissues by the internal organ motion.

Recently, a basic concept of tumor-following
radiation therapy (TFRT) using real-time image
guided techniques has been proposed for continu-
ous irradiation to moving tumor such as lung tumor
[2]. In TFRT, the radiation beam is repositioned and
reshaped to adapt to the lung tumor motion and the
deformation in real-time. The irradiated area can
suitably be limited around the target tumor by beam
repositioning and reshaping. Thus, the exposure of
normal tissues to the dose can be decreased.

However, there are some challenges to be
solved for clinical use of TFRT, such as:

1. Real-time measurement for tumor position and
shape.

2. Compensation of inherent latencies in radiation
device.

The first technique, measurement of the tumor loca-
tion can be achieved by using an X-ray fluoroscopic
imaging system and implanted fiducial markers
[3]. However, real-time beam-repositioning has not
been developed yet because current radiotherapy
machines have mechanical and computational time
delays of up to about 1 s for controlling irradiation
field and image processing. The latency definitely
affects badly on the irradiation accuracy [4], and
thus must be compensated.

Typical solution for compensation of the la-
tency is to predict the lung tumor motion [5, 13,

7, 8]. Among them, a time-varying seasonal au-
toregressive (TVSAR) is an natural extension of the
general seasonal AR model to take into account of
a time varying nature of the respiratory motion, and
can achieve the best performance of highly accurate
prediction of less than 1 mm at 1 s ahead. We have
also reported that TVSAR can change the sensitivi-
ties to follow the time varying nature and the better
prediction performance can be achieved by the bet-
ter sensitivities [11]. In addition, the experimental
results have suggested that more appropriate use of
the sensitivities can further improve the prediction
performance.

In this paper, we further investigate the use of
the sensitivities of TVSAR predictions and propose
a new prediction method to improve the predic-
tion performance for TFRT. The proposed method
is composed of two parts:

1. A part consists of several predictors with differ-
ent settings

2. A part for combining the several predictions

The predictors to be combined produce each pre-
diction with different sensitivities and each can be
superior to others at specific situation. To obtain the
better prediction performance, the second part intel-
ligently combines those different predictions based
on the sensitivities.

The rest of this paper consists of as follows.
First we explain a lung tumor motion used for this
study in section II. Then seasonal prediction meth-
ods including the proposed method are described in
section III. Section IV shows the superiority of the
proposed method on prediction performance. Con-
clusions are provided in the last section.

2 Target Time Series: Lung Tumor
Motion

The three-dimensional time series of the pa-
tient’s lung tumor motion were obtained at
Hokkaido University [3] and relatively-clean three
data sets are used for this study (i.e., the data are
composed of regularly breathing). The time se-
ries of tumor location was observed as a location
of the golden fiducial marker implanted into around
the tumor, by using a kV X-ray fluoroscopic sys-
tem with sampling frequency 30 Hz. Observational
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noise and outliers were preliminarily reduced by us-
ing statistical and low-pass filters.

Let us henceforth consider a time series for each
spatial dimension of left to right (LR), cephalocau-
dal (CC), and anteroposterior (AP) axes as follows.

{y(1),y(2), · · · ,y(t), · · ·} (1)

where {y(t)} (mm) denotes a tumor coordinate at
discrete time t.

Figure 1 shows the three data sets of the lung tu-
mor motion. As is clear from this figure, the motion
has a periodical nature mainly caused by patient’s
respiration. Therefore, we can also consider that
the tumor motion is a kind of periodical function of
time. Then a sinusoidal periodic model of the time
varying nature of the motion can be given as

y(t) = A(t)cosϑ(t) (2)

where A(t) and ϑ(t) are instantaneous amplitude
and instantaneous phase at time t, respectively.
Note that, a temporal differentiation of the phase
is not constant, and changes with time in the model.
(i.e., dϑ(t)/dt ̸= const.).

Such quasi-periodical nature of the motion can
be confirmed by observing the period of the time
series. For example, period s(t) as time interval be-
tween a peak and next peak differs each other even
if the amplitude variation A(t) is sufficiently small
as shown in figure 2. An average s̄ of the period
is about 90 (3 s) for the three data sets used in this
paper.
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Figure 1. Three clinical data of 3D time series of
lung tumor motion for different treatment fractions.

These tumor motions have a quasi-periodical
nature of the average period s̄ = 90 (3 s).
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Figure 2. An example of time varying period s2(t)
obtained as intervals among peaks of

cephalocaudal motion y2(t) of DATA #1. Peak to
peak periods are s2(t) = 87 at time t = 711 and

s2(t) = 82 at time t = 793, respectively.

3 Prediction Methods

In this section, prediction methods based on a
seasonal time series model are described. First we
introduce a traditional seasonal method and explain
its limitations on prediction of the lung tumor mo-
tion. Then, the seasonal prediction method is ex-
tended to take into account a time-varying nature of
the periodical motion. At last, we propose a new
prediction system by using the extended seasonal
prediction methods.

3.1 Seasonal Prediction Method: Seasonal
Autoregressive Model

Seasonal autoregressive integrated moving-
average (SARIMA) model is a general expression
of the time series which varies periodically (i.e., a
periodical function of time such as trigonometric
function).

The SARIMA model of the time series
{x(0),x(1), . . . ,x(t)} with period s can be expressed
as follows.

ϕ(B)Φ(Bs)(1−B)d(1−Bs)Dx(t) = θ(B)Θ(Bs)ε(t)
(3)

where d and D are respectively the order of lo-
cal and seasonal integrated components, ε(t) is the
Gaussian noise of which mean and variance are 0
and σ2, respectively, and B is a delay operator de-
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3.5.2 Multilayer perceptron (MLP)

Multilayer perceptron (MLP) is adopted as a
nonlinear combining function. In this study, we
have empirically adopted three layers feed forward
network with 16 hidden neural units. Each predic-
tion by TVSAR models and the zero-order hold pre-
diction are given to MLP. The network is trained to
minimize the mean squared prediction error by us-
ing Levenberg-Marquardt algorithm [16] and vali-
dated by using two-fold cross-validation technique
[17] within training data set.

3.5.3 Support Vector Regression (SVR)

As another nonlinear approach, ε-Support Vec-
tor Regression (SVR) is also employed to the com-
bination part. In this study, we used LibSVM by
Chang et al.[12] for the implementation. The input
variables same for MLP are fed to SVR, and the ra-
dial basis function was adopted as kernel function.
Other settings are given as default values in the li-
brary.

4 Results

4.1 Experimental Setup and Validation

We have evaluated prediction performance of
the proposed system by using three clinical data as
shown in figure 1.

The time series y(t) and predicted values ŷn(t +
h|t) of 501≤ t ≤ 1750 are used for training the com-
bining functions. That is, the combining functions
are adjusted to adapt to the first half of each treat-
ment fraction. Note that such adaptation process
can be adopted before the treatment time in clini-
cal.

Mean absolute error (MAE) in (24) with
{ts, te}= {501,1750} was used as an evaluation in-
dex for each prediction methods among three data
sets.

Figure 8 shows the average MAE by the pro-
posed prediction system with three combination
approaches among the data sets of the first half.
MAEs of the single TVSAR predictions with αn =
{0.5,1,1.5} and ZOH are also shown for compari-
son. As is clear from this figure, the proposed sys-
tem with the MLP and SVR combinations achieved
the best and the second best MAEs for prediction

horizons 1 ≤ h ≤ 30 (0.033 s to 1.000 s) respec-
tively. MAE of MR is also better than each sin-
gle TVSAR and ZOH. These results indicates that
these combinations were well adapted to the first
half of each data set. Overall, these results suggest
the effectiveness of the proposed combination ap-
proaches.
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prediction methods for confirmation of the

adjustment of MR, MLP, and SVR combinations.
Each curve means each method’s average among

three data sets of the first half
({ts, te}= {501,1750}).

4.2 Evaluation of Prediction Performance

The three combination methods were also tested
on the last half (y(t) of 1751 ≤ t ≤ 3000) of each
data set. MAE with {ts, te} = {1751,3000} was
used again.

Figure 9 and Table 1 show the performance
by the proposed three combination methods and
each of predictions combined. As is clear from
this figure, all the proposed combination techniques
achieved less MAEs than any single prediction for
short- to mid-term (about 1 ≤ h ≤ 30). Especially,
the MAEs of MR and SVR are almost less than the
single predictions for all the prediction horizon h.
Therefore, to combine several different predictions
is basically useful to improve the prediction perfor-
mance.

The proposed method with SVR combination
achieved the least MAE widely for prediction hori-
zons on both halves of the data sets. This result
suggests that there is a complex nonlinear relation
among the different predictions and the true future
value. Moreover, it can be considered that such
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noise and outliers were preliminarily reduced by us-
ing statistical and low-pass filters.

Let us henceforth consider a time series for each
spatial dimension of left to right (LR), cephalocau-
dal (CC), and anteroposterior (AP) axes as follows.

{y(1),y(2), · · · ,y(t), · · ·} (1)

where {y(t)} (mm) denotes a tumor coordinate at
discrete time t.

Figure 1 shows the three data sets of the lung tu-
mor motion. As is clear from this figure, the motion
has a periodical nature mainly caused by patient’s
respiration. Therefore, we can also consider that
the tumor motion is a kind of periodical function of
time. Then a sinusoidal periodic model of the time
varying nature of the motion can be given as

y(t) = A(t)cosϑ(t) (2)

where A(t) and ϑ(t) are instantaneous amplitude
and instantaneous phase at time t, respectively.
Note that, a temporal differentiation of the phase
is not constant, and changes with time in the model.
(i.e., dϑ(t)/dt ̸= const.).

Such quasi-periodical nature of the motion can
be confirmed by observing the period of the time
series. For example, period s(t) as time interval be-
tween a peak and next peak differs each other even
if the amplitude variation A(t) is sufficiently small
as shown in figure 2. An average s̄ of the period
is about 90 (3 s) for the three data sets used in this
paper.
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Figure 1. Three clinical data of 3D time series of
lung tumor motion for different treatment fractions.

These tumor motions have a quasi-periodical
nature of the average period s̄ = 90 (3 s).
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obtained as intervals among peaks of

cephalocaudal motion y2(t) of DATA #1. Peak to
peak periods are s2(t) = 87 at time t = 711 and

s2(t) = 82 at time t = 793, respectively.

3 Prediction Methods

In this section, prediction methods based on a
seasonal time series model are described. First we
introduce a traditional seasonal method and explain
its limitations on prediction of the lung tumor mo-
tion. Then, the seasonal prediction method is ex-
tended to take into account a time-varying nature of
the periodical motion. At last, we propose a new
prediction system by using the extended seasonal
prediction methods.

3.1 Seasonal Prediction Method: Seasonal
Autoregressive Model

Seasonal autoregressive integrated moving-
average (SARIMA) model is a general expression
of the time series which varies periodically (i.e., a
periodical function of time such as trigonometric
function).

The SARIMA model of the time series
{x(0),x(1), . . . ,x(t)} with period s can be expressed
as follows.

ϕ(B)Φ(Bs)(1−B)d(1−Bs)Dx(t) = θ(B)Θ(Bs)ε(t)
(3)

where d and D are respectively the order of lo-
cal and seasonal integrated components, ε(t) is the
Gaussian noise of which mean and variance are 0
and σ2, respectively, and B is a delay operator de-
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Figure 7. Schematic diagram of the proposed prediction system. The system is composed of two parts of
that (a) several prediction models (3 TVSAR models and zero-order hold), and (b) combination part.

Multiple regression is shown as an example of combination method.

nonlinear relation has a time varying nature. For
example, on the first half of the data sets (i.e., train-
ing phase), nonlinear functions represented by MLP
and SVR performed better MAEs than MAEs of
other predictions. However, on the last half of the
data sets, the MAE of MLP is not superior to the
other methods for h > 15, and MLP was the worst
for long-term prediction except for ZOH. Also the
SVR combination indicated that the less superior-
ity for long-term prediction. This can be due to
the time varying nature of the nonlinear relation.
In fact, the relation were changed for the last half
(1751 ≤ t ≤ 3000): The error by the single TVSAR
with α3 = 1.5 (red line) is the worst for the first half,
but the it changes to the error by the single TVSAR
with α1 = 0.5 (blue line) for 11 ≤ h ≤ 30 of the last
half. Thus, the combinations adjusted to only the
relations on the first half could not perform well for
the last half.

Investigating more detail relations and more ef-
ficient combination methods will be useful for fur-
ther improvement. For example, exploring of ap-
propriate parameter settings can help to improve
the prediction performance. Also, the combinations
were statically adjusted in this paper, but dynamic
adaptation of the combinations may provide better
prediction in some cases.
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Figure 9. Mean absolute error MAE(h) with
{ts, te}= {1751,3000} for testing the prediction

performances of the compared prediction methods.

4.3 Comparison with Other Prediction
Methods

For comparison, we have tested two state-of-
the-art prediction methods which were proposed for
lung tumor motion.

4.3.1 Singular Spectrum Analysis based
method

Demachi, et al. have applied a singular
spectrum analysis (SSA) for lung tumor motion
prediction[14, 15]. SSA is a the non-parametric
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duration of treatment. It is also required to decrease
an adverse effect by avoiding irradiation to normal
tissues located around the target tumor.

Observing the target tumor location and prop-
erly planning the irradiated field are necessary
for accurate, sufficient, and continuous irradiation.
Such desirable irradiation has already been used
and reported good treatment results which are even
equal to surgery [1]. However, activities of internal
organs such as lung and heart move a tumor during
the treatment fraction, and the tumor motion makes
it difficult to achieve precise setup and accurate con-
tinuous irradiation. Therefore, pre-planned static ir-
radiation area may not suitably cover the moving
target tumor. In addition, we cannot irradiate suffi-
cient therapeutic dose to patient because the thera-
peutic dose may also cover the surrounding healthy
tissues by the internal organ motion.

Recently, a basic concept of tumor-following
radiation therapy (TFRT) using real-time image
guided techniques has been proposed for continu-
ous irradiation to moving tumor such as lung tumor
[2]. In TFRT, the radiation beam is repositioned and
reshaped to adapt to the lung tumor motion and the
deformation in real-time. The irradiated area can
suitably be limited around the target tumor by beam
repositioning and reshaping. Thus, the exposure of
normal tissues to the dose can be decreased.

However, there are some challenges to be
solved for clinical use of TFRT, such as:

1. Real-time measurement for tumor position and
shape.

2. Compensation of inherent latencies in radiation
device.

The first technique, measurement of the tumor loca-
tion can be achieved by using an X-ray fluoroscopic
imaging system and implanted fiducial markers
[3]. However, real-time beam-repositioning has not
been developed yet because current radiotherapy
machines have mechanical and computational time
delays of up to about 1 s for controlling irradiation
field and image processing. The latency definitely
affects badly on the irradiation accuracy [4], and
thus must be compensated.

Typical solution for compensation of the la-
tency is to predict the lung tumor motion [5, 13,

7, 8]. Among them, a time-varying seasonal au-
toregressive (TVSAR) is an natural extension of the
general seasonal AR model to take into account of
a time varying nature of the respiratory motion, and
can achieve the best performance of highly accurate
prediction of less than 1 mm at 1 s ahead. We have
also reported that TVSAR can change the sensitivi-
ties to follow the time varying nature and the better
prediction performance can be achieved by the bet-
ter sensitivities [11]. In addition, the experimental
results have suggested that more appropriate use of
the sensitivities can further improve the prediction
performance.

In this paper, we further investigate the use of
the sensitivities of TVSAR predictions and propose
a new prediction method to improve the predic-
tion performance for TFRT. The proposed method
is composed of two parts:

1. A part consists of several predictors with differ-
ent settings

2. A part for combining the several predictions

The predictors to be combined produce each pre-
diction with different sensitivities and each can be
superior to others at specific situation. To obtain the
better prediction performance, the second part intel-
ligently combines those different predictions based
on the sensitivities.

The rest of this paper consists of as follows.
First we explain a lung tumor motion used for this
study in section II. Then seasonal prediction meth-
ods including the proposed method are described in
section III. Section IV shows the superiority of the
proposed method on prediction performance. Con-
clusions are provided in the last section.

2 Target Time Series: Lung Tumor
Motion

The three-dimensional time series of the pa-
tient’s lung tumor motion were obtained at
Hokkaido University [3] and relatively-clean three
data sets are used for this study (i.e., the data are
composed of regularly breathing). The time se-
ries of tumor location was observed as a location
of the golden fiducial marker implanted into around
the tumor, by using a kV X-ray fluoroscopic sys-
tem with sampling frequency 30 Hz. Observational
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noise and outliers were preliminarily reduced by us-
ing statistical and low-pass filters.

Let us henceforth consider a time series for each
spatial dimension of left to right (LR), cephalocau-
dal (CC), and anteroposterior (AP) axes as follows.

{y(1),y(2), · · · ,y(t), · · ·} (1)

where {y(t)} (mm) denotes a tumor coordinate at
discrete time t.

Figure 1 shows the three data sets of the lung tu-
mor motion. As is clear from this figure, the motion
has a periodical nature mainly caused by patient’s
respiration. Therefore, we can also consider that
the tumor motion is a kind of periodical function of
time. Then a sinusoidal periodic model of the time
varying nature of the motion can be given as

y(t) = A(t)cosϑ(t) (2)

where A(t) and ϑ(t) are instantaneous amplitude
and instantaneous phase at time t, respectively.
Note that, a temporal differentiation of the phase
is not constant, and changes with time in the model.
(i.e., dϑ(t)/dt ̸= const.).

Such quasi-periodical nature of the motion can
be confirmed by observing the period of the time
series. For example, period s(t) as time interval be-
tween a peak and next peak differs each other even
if the amplitude variation A(t) is sufficiently small
as shown in figure 2. An average s̄ of the period
is about 90 (3 s) for the three data sets used in this
paper.
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Figure 1. Three clinical data of 3D time series of
lung tumor motion for different treatment fractions.

These tumor motions have a quasi-periodical
nature of the average period s̄ = 90 (3 s).
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Figure 2. An example of time varying period s2(t)
obtained as intervals among peaks of

cephalocaudal motion y2(t) of DATA #1. Peak to
peak periods are s2(t) = 87 at time t = 711 and

s2(t) = 82 at time t = 793, respectively.

3 Prediction Methods

In this section, prediction methods based on a
seasonal time series model are described. First we
introduce a traditional seasonal method and explain
its limitations on prediction of the lung tumor mo-
tion. Then, the seasonal prediction method is ex-
tended to take into account a time-varying nature of
the periodical motion. At last, we propose a new
prediction system by using the extended seasonal
prediction methods.

3.1 Seasonal Prediction Method: Seasonal
Autoregressive Model

Seasonal autoregressive integrated moving-
average (SARIMA) model is a general expression
of the time series which varies periodically (i.e., a
periodical function of time such as trigonometric
function).

The SARIMA model of the time series
{x(0),x(1), . . . ,x(t)} with period s can be expressed
as follows.

ϕ(B)Φ(Bs)(1−B)d(1−Bs)Dx(t) = θ(B)Θ(Bs)ε(t)
(3)

where d and D are respectively the order of lo-
cal and seasonal integrated components, ε(t) is the
Gaussian noise of which mean and variance are 0
and σ2, respectively, and B is a delay operator de-
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Table 1. Summary of prediction performance on test phase at several prediction horizons h.

Avg. and std. of MAE among data sets
Prediction methods µMAE ±σMAE (mm)

ZOH 0.256±0.009 3.432±0.143 5.810±0.191
Single TVSAR α1 = 0.5 0.613±0.030 0.933±0.033 0.940±0.035

α2 = 1.0 0.723±0.015 0.874±0.049 0.925±0.076
α3 = 1.5 0.794±0.054 0.887±0.088 0.922±0.115

Proposed combinations MR 0.226±0.009 0.846±0.020 0.920±0.024
MLP 0.201±0.018 0.851±0.124 1.087±0.037
SVR 0.235±0.041 0.753±0.009 0.934±0.030

Prediction horizon h 1 (0.033 s) 15 (0.5 s) 30 (1 s)

time series analysis, and is based on singular value
decomposition of the covariance matrix of target
time series. Three designable parameters of SSA
are length of training sample N, the dimension M of
the covariance matrix, and τ for the dimension re-
duction, respectively. The predicted value ŷ(t +1|t)
is calculated as the weighted sum of the latest ob-
served values. The weight coefficients are cal-
culated by using dimension reduced singular vec-
tors. Also, h = 2,3, . . . samples ahead prediction
ŷ(t + h|t) can be calculated sequentially by using
h − 1 sample ahead prediction ŷ(t + h − 1|t). In
this study, we have empirically set the parameters
of SSA as: N = 300,M = 250 and τ = 18.

4.3.2 Kernel Density Estimation (KDE) based
method

A kernel density estimation (KDE) based pre-
diction method is proposed in [13]. KDE is known
as a non-parametric estimation of the probability
density function (PDF). On KDE-based prediction
method, the PDF by using the a-th covariate vec-
tor x(t − k) = [y(t −h− k− (a−1)δ),y(t −h− k−
(a− 2)δ), . . . ,y(t − h− k)],k = 1,2, . . . ,K with lag
length δ and its response y(t) for specific prediction
horizon h. Then the predicted value ŷ(t + h|t) can
be estimated as a mean of the conditioned proba-
bility distribution by the latest covariate vector x(t).
Designable parameters of KDE-based method are
the dimension a of covariate vector, the lag length
δ and the length for training sample K, respectively.
In this study, we have used the parameters of KDE
as: a = 3, δ = 15, and K = 300.

4.3.3 Comparison results

SSA-based method and KDE-based method
were tested their prediction performance on the
same three data sets shown in figure 1.

Figure 10 shows the average MAEs of ZOH,
SSA, and KDE and the proposed system with SVR.
According to this comparison, the least MAE for
all the prediction horizon 1 ≤ h ≤ 30 was achieved
by the proposed system with SVR. For 3 ≤ h ≤ 10,
SSA-based method achieved the second best MAE.
However, MAE of SSA are the largest for h ≥ 15
except MAE of ZOH. It is considered that SSA-
based method is good for short- or mid-term pre-
diction. KDE-based method showed relatively large
MAE for small h, but achieved the second best
MAE for h ≥ 14. As seen above, the proposed
method is superior to other prediction methods for
the data sets tested.
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Figure 10. Mean absolute error MAE(h) with
{ts, te}= {1751,3000} for comparing the

prediction performances of the proposed system
with SVR and other prediction methods.
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noise and outliers were preliminarily reduced by us-
ing statistical and low-pass filters.

Let us henceforth consider a time series for each
spatial dimension of left to right (LR), cephalocau-
dal (CC), and anteroposterior (AP) axes as follows.

{y(1),y(2), · · · ,y(t), · · ·} (1)

where {y(t)} (mm) denotes a tumor coordinate at
discrete time t.

Figure 1 shows the three data sets of the lung tu-
mor motion. As is clear from this figure, the motion
has a periodical nature mainly caused by patient’s
respiration. Therefore, we can also consider that
the tumor motion is a kind of periodical function of
time. Then a sinusoidal periodic model of the time
varying nature of the motion can be given as

y(t) = A(t)cosϑ(t) (2)

where A(t) and ϑ(t) are instantaneous amplitude
and instantaneous phase at time t, respectively.
Note that, a temporal differentiation of the phase
is not constant, and changes with time in the model.
(i.e., dϑ(t)/dt ̸= const.).

Such quasi-periodical nature of the motion can
be confirmed by observing the period of the time
series. For example, period s(t) as time interval be-
tween a peak and next peak differs each other even
if the amplitude variation A(t) is sufficiently small
as shown in figure 2. An average s̄ of the period
is about 90 (3 s) for the three data sets used in this
paper.
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Figure 1. Three clinical data of 3D time series of
lung tumor motion for different treatment fractions.

These tumor motions have a quasi-periodical
nature of the average period s̄ = 90 (3 s).
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s2(t) = 82 at time t = 793, respectively.

3 Prediction Methods

In this section, prediction methods based on a
seasonal time series model are described. First we
introduce a traditional seasonal method and explain
its limitations on prediction of the lung tumor mo-
tion. Then, the seasonal prediction method is ex-
tended to take into account a time-varying nature of
the periodical motion. At last, we propose a new
prediction system by using the extended seasonal
prediction methods.

3.1 Seasonal Prediction Method: Seasonal
Autoregressive Model

Seasonal autoregressive integrated moving-
average (SARIMA) model is a general expression
of the time series which varies periodically (i.e., a
periodical function of time such as trigonometric
function).

The SARIMA model of the time series
{x(0),x(1), . . . ,x(t)} with period s can be expressed
as follows.

ϕ(B)Φ(Bs)(1−B)d(1−Bs)Dx(t) = θ(B)Θ(Bs)ε(t)
(3)

where d and D are respectively the order of lo-
cal and seasonal integrated components, ε(t) is the
Gaussian noise of which mean and variance are 0
and σ2, respectively, and B is a delay operator de-
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5 Conclusions

In this paper, a new lung tumor motion predic-
tion system based on a time-varying SAR model
was considered for accurate radiation therapy. The
proposed method is composed of several different
predictions including TVSAR model with different
settings and a combination part to combining the
predictions. It has been shown that the prediction
performance of the proposed method with intelli-
gent combinations of the useful pieces of informa-
tion is basically superior to single predictions and
clinically sufficient. Also according to the result
of comparison with the state-of-the-art prediction
methods, the proposed method achieved the best
prediction performance.
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duration of treatment. It is also required to decrease
an adverse effect by avoiding irradiation to normal
tissues located around the target tumor.

Observing the target tumor location and prop-
erly planning the irradiated field are necessary
for accurate, sufficient, and continuous irradiation.
Such desirable irradiation has already been used
and reported good treatment results which are even
equal to surgery [1]. However, activities of internal
organs such as lung and heart move a tumor during
the treatment fraction, and the tumor motion makes
it difficult to achieve precise setup and accurate con-
tinuous irradiation. Therefore, pre-planned static ir-
radiation area may not suitably cover the moving
target tumor. In addition, we cannot irradiate suffi-
cient therapeutic dose to patient because the thera-
peutic dose may also cover the surrounding healthy
tissues by the internal organ motion.

Recently, a basic concept of tumor-following
radiation therapy (TFRT) using real-time image
guided techniques has been proposed for continu-
ous irradiation to moving tumor such as lung tumor
[2]. In TFRT, the radiation beam is repositioned and
reshaped to adapt to the lung tumor motion and the
deformation in real-time. The irradiated area can
suitably be limited around the target tumor by beam
repositioning and reshaping. Thus, the exposure of
normal tissues to the dose can be decreased.

However, there are some challenges to be
solved for clinical use of TFRT, such as:

1. Real-time measurement for tumor position and
shape.

2. Compensation of inherent latencies in radiation
device.

The first technique, measurement of the tumor loca-
tion can be achieved by using an X-ray fluoroscopic
imaging system and implanted fiducial markers
[3]. However, real-time beam-repositioning has not
been developed yet because current radiotherapy
machines have mechanical and computational time
delays of up to about 1 s for controlling irradiation
field and image processing. The latency definitely
affects badly on the irradiation accuracy [4], and
thus must be compensated.

Typical solution for compensation of the la-
tency is to predict the lung tumor motion [5, 13,

7, 8]. Among them, a time-varying seasonal au-
toregressive (TVSAR) is an natural extension of the
general seasonal AR model to take into account of
a time varying nature of the respiratory motion, and
can achieve the best performance of highly accurate
prediction of less than 1 mm at 1 s ahead. We have
also reported that TVSAR can change the sensitivi-
ties to follow the time varying nature and the better
prediction performance can be achieved by the bet-
ter sensitivities [11]. In addition, the experimental
results have suggested that more appropriate use of
the sensitivities can further improve the prediction
performance.

In this paper, we further investigate the use of
the sensitivities of TVSAR predictions and propose
a new prediction method to improve the predic-
tion performance for TFRT. The proposed method
is composed of two parts:

1. A part consists of several predictors with differ-
ent settings

2. A part for combining the several predictions

The predictors to be combined produce each pre-
diction with different sensitivities and each can be
superior to others at specific situation. To obtain the
better prediction performance, the second part intel-
ligently combines those different predictions based
on the sensitivities.

The rest of this paper consists of as follows.
First we explain a lung tumor motion used for this
study in section II. Then seasonal prediction meth-
ods including the proposed method are described in
section III. Section IV shows the superiority of the
proposed method on prediction performance. Con-
clusions are provided in the last section.

2 Target Time Series: Lung Tumor
Motion

The three-dimensional time series of the pa-
tient’s lung tumor motion were obtained at
Hokkaido University [3] and relatively-clean three
data sets are used for this study (i.e., the data are
composed of regularly breathing). The time se-
ries of tumor location was observed as a location
of the golden fiducial marker implanted into around
the tumor, by using a kV X-ray fluoroscopic sys-
tem with sampling frequency 30 Hz. Observational
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noise and outliers were preliminarily reduced by us-
ing statistical and low-pass filters.

Let us henceforth consider a time series for each
spatial dimension of left to right (LR), cephalocau-
dal (CC), and anteroposterior (AP) axes as follows.

{y(1),y(2), · · · ,y(t), · · ·} (1)

where {y(t)} (mm) denotes a tumor coordinate at
discrete time t.

Figure 1 shows the three data sets of the lung tu-
mor motion. As is clear from this figure, the motion
has a periodical nature mainly caused by patient’s
respiration. Therefore, we can also consider that
the tumor motion is a kind of periodical function of
time. Then a sinusoidal periodic model of the time
varying nature of the motion can be given as

y(t) = A(t)cosϑ(t) (2)

where A(t) and ϑ(t) are instantaneous amplitude
and instantaneous phase at time t, respectively.
Note that, a temporal differentiation of the phase
is not constant, and changes with time in the model.
(i.e., dϑ(t)/dt ̸= const.).

Such quasi-periodical nature of the motion can
be confirmed by observing the period of the time
series. For example, period s(t) as time interval be-
tween a peak and next peak differs each other even
if the amplitude variation A(t) is sufficiently small
as shown in figure 2. An average s̄ of the period
is about 90 (3 s) for the three data sets used in this
paper.
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Figure 1. Three clinical data of 3D time series of
lung tumor motion for different treatment fractions.

These tumor motions have a quasi-periodical
nature of the average period s̄ = 90 (3 s).
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obtained as intervals among peaks of
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3 Prediction Methods

In this section, prediction methods based on a
seasonal time series model are described. First we
introduce a traditional seasonal method and explain
its limitations on prediction of the lung tumor mo-
tion. Then, the seasonal prediction method is ex-
tended to take into account a time-varying nature of
the periodical motion. At last, we propose a new
prediction system by using the extended seasonal
prediction methods.

3.1 Seasonal Prediction Method: Seasonal
Autoregressive Model

Seasonal autoregressive integrated moving-
average (SARIMA) model is a general expression
of the time series which varies periodically (i.e., a
periodical function of time such as trigonometric
function).

The SARIMA model of the time series
{x(0),x(1), . . . ,x(t)} with period s can be expressed
as follows.

ϕ(B)Φ(Bs)(1−B)d(1−Bs)Dx(t) = θ(B)Θ(Bs)ε(t)
(3)

where d and D are respectively the order of lo-
cal and seasonal integrated components, ε(t) is the
Gaussian noise of which mean and variance are 0
and σ2, respectively, and B is a delay operator de-
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noise and outliers were preliminarily reduced by us-
ing statistical and low-pass filters.

Let us henceforth consider a time series for each
spatial dimension of left to right (LR), cephalocau-
dal (CC), and anteroposterior (AP) axes as follows.

{y(1),y(2), · · · ,y(t), · · ·} (1)

where {y(t)} (mm) denotes a tumor coordinate at
discrete time t.

Figure 1 shows the three data sets of the lung tu-
mor motion. As is clear from this figure, the motion
has a periodical nature mainly caused by patient’s
respiration. Therefore, we can also consider that
the tumor motion is a kind of periodical function of
time. Then a sinusoidal periodic model of the time
varying nature of the motion can be given as

y(t) = A(t)cosϑ(t) (2)

where A(t) and ϑ(t) are instantaneous amplitude
and instantaneous phase at time t, respectively.
Note that, a temporal differentiation of the phase
is not constant, and changes with time in the model.
(i.e., dϑ(t)/dt ̸= const.).

Such quasi-periodical nature of the motion can
be confirmed by observing the period of the time
series. For example, period s(t) as time interval be-
tween a peak and next peak differs each other even
if the amplitude variation A(t) is sufficiently small
as shown in figure 2. An average s̄ of the period
is about 90 (3 s) for the three data sets used in this
paper.
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Figure 1. Three clinical data of 3D time series of
lung tumor motion for different treatment fractions.

These tumor motions have a quasi-periodical
nature of the average period s̄ = 90 (3 s).
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3 Prediction Methods

In this section, prediction methods based on a
seasonal time series model are described. First we
introduce a traditional seasonal method and explain
its limitations on prediction of the lung tumor mo-
tion. Then, the seasonal prediction method is ex-
tended to take into account a time-varying nature of
the periodical motion. At last, we propose a new
prediction system by using the extended seasonal
prediction methods.

3.1 Seasonal Prediction Method: Seasonal
Autoregressive Model

Seasonal autoregressive integrated moving-
average (SARIMA) model is a general expression
of the time series which varies periodically (i.e., a
periodical function of time such as trigonometric
function).

The SARIMA model of the time series
{x(0),x(1), . . . ,x(t)} with period s can be expressed
as follows.

ϕ(B)Φ(Bs)(1−B)d(1−Bs)Dx(t) = θ(B)Θ(Bs)ε(t)
(3)

where d and D are respectively the order of lo-
cal and seasonal integrated components, ε(t) is the
Gaussian noise of which mean and variance are 0
and σ2, respectively, and B is a delay operator de-


