PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of extinction coefficient on transmission in binary multilayer

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The influence of the extinction coefficient for transmission, reflectance and absorption in multilayer binary. Reps cluster was equal to 7 It was built of two types of materials. First was a NaCl equivalent with a refractive index described by nA=1.544-ik , and as second was GaAs lossless metamaterial equivalent Design/methodology/approach: Research was carried out using the map of: transmitting, reflectance and absorption of the electromagnetic wave. Maps determined using the matrix method. Findings: It is shown that the higher the extinction coefficient, which is responsible for the absorption of electromagnetic waves, decreases the transmittance and reflectance of the multilayer system at the same time increasing its absorption. Research limitations/implications: Would be a reasonable correlation between the results of the transmission, reflectance and absorption obtained using numerical methods with with experiment. Practical implications: Taking into account the extinction coefficient allows for a better representation of the real multilayer structures. Quasi one-dimensional superlattices can be used as filters or multiplexers electromagnetic waves. Originality/value: In the literature the most frequently analyzed lossless structure. Taking into account the extinction coefficient allows for better study the properties of the tested materials.
Rocznik
Strony
236--243
Opis fizyczny
Bibliogr. 44 poz., rys.
Twórcy
autor
  • Institute of Physics, Technical University of Częstochowa, ul. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
  • Institute of Physics, Technical University of Częstochowa, ul. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
  • Institute of Materials Engineering, Technical University of Częstochowa, ul. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
  • Institute of Physics, Technical University of Częstochowa, ul. Armii Krajowej 19, 42-200 Częstochowa, Poland
  • Institute of Physics, Technical University of Częstochowa, ul. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
  • Institute of Physics, Technical University of Częstochowa, ul. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
  • Institute of Physics, Technical University of Częstochowa, ul. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
Bibliografia
  • [1] M. Born, E. Wolf, Principles of optics, Pergamon Press, London, 1968.
  • [2] P. Yeh, Optical Waves in layered media, John Wiley and Sons, New York, 1988.
  • [3] L.M. Briechowski, Wołny w słoistych sriedach, Nauka, Moskwa, 1973.
  • [4] A. Yariv, P. Yeh, Optical waves in crystals, Propagation and Control of Laser Radiation, John Wiley and Sons, New York, 1984.
  • [5] A. Rostami, S. Matloub, Exactly solvable inhomogeneous Fibonacci-class quasi-periodic structures (optical filtering), Optics Communications 247 (2005) 247-256.
  • [6] S. John, Strong localization of photons in certain disordered dielectric superlattices, Physical Review Letters 58 (1987) 2486-2489.
  • [7] E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Physical Review Letters 58 (1987) 2059-2062.
  • [8] E. Yablonovitch, Photonic crystals, semiconductors lights, World of Science 126/2 (2002) 46-53.
  • [9] J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals, Molding the Flow of Light, Princeton University Press, Singapore, 1995.
  • [10] S.G. Johnson, J.D. Joannopoulos, Photonic crystals, The Road from Theory to Practice, Kluwer Academic Publishers, Boston, 2002.
  • [11] Silicon Photonics, Ed.: D. J. Lockwood, L. Pavesi, Springer-Verlag, Heidelberg, Applied Physics vol. 94, 2004.
  • [12] K. Sakoda, Optical Properties of photonic crystals, Springer-Verlag, Berlin, 2001.
  • [13] A. Bjarklev, J. Broeng, A. S. Bjarklev, Photonic crystal fibers, Kluwer Academic Publishers, Boston, 2003.
  • [14] D.S. Shechmtan, I. Blench, D. Gratias, J. W. Cahn, Metallic phase with long-ranged orientational order and no translational symmetry, Physical Review Letters 53 (1984) 1951-1953.
  • [15] D. Levine, P.J. Steinhardt, Quasicrystals, A new class of ordered structures, Physical Review Letters 53 (1984) 2477-2480.
  • [16] D. Levine, P. J. Steinhardt, Quasicrystals, Definition and structure, Physical Review B 34 (1986) 596-616.
  • [17] P.J. Steinhardt, S. Ostlund, The Physics of Quasicrystals, World Scientific, Singapore, 1987.
  • [18] P. Guyot, P. Krammer, M. de Boissieu, Quasicrystals, Reports on Progress in Physics 54 (1991) 1373-1425.
  • [19] D.P. DiVincenzo Quasicrystals, The State of the Art,. Steinhardt, World Scientific, Singapore, 1991.
  • [20] S.J. Poon, Electronic properties of quasicrystals. An experimental review, Advances in Physics 41 (1992) 303.
  • [21] Ch. Hu, R. Wang, D.-H. Ding, Symmetry groups, physical property tensors, elasticity and dislocations in quasicrystals, Reports on Progress in Physics 63 (2002) 1-39.
  • [22] L. Esaki, R. Tsu, Superlattice and negative differential conductivity in semiconductors, IBM Journal of Research and Development 14 (1970) 61-65.
  • [23] A. Wacker, Semiconductor superlattices: a model system for nonlinear transport, Physics Reports 357 (2002) 1-111.
  • [24] M. Gluck, A. R. Kolovsky, H. J. Korsch, Wannier-Stark resonances in optical and semiconductor superlattices, Physics Reports 366 (2002) 103-182.
  • [25] E.L. Albuquerque, M.G. Cottam, Theory of elementary excitations in quasicrystals structures, Physics Reports 376 (2003) 225-337.
  • [26] E. Abe, Y. Yan, S. J. Pennycook, Quasicrystals as cluster aggregates, Nature Materials 3 (2004) 759-767.
  • [27] X. Zhou, Ch. Hu, P. Gong, Sh. Qiu, Nonlinear elastic properties of decagonal quasicrystals, Physical Review B 70 (2004) 94202-94206.
  • [28] L. Jacak, P. Hawrylak, A.Wójs, Quantum dots, Springer-Verlag, Berlin, Heidelberg, New York, 1998.
  • [29] H.S. Nalwa, Nanostructured Materials and Nanotechnology, Academic Press, New York, 2002.
  • [30] M. Kohler, W. Fritzsche, Nanotechnology: an introduction to nanostructuring techniques, Wiley-VCH Verlag, Weinheim, 2004.
  • [31] Z. L. Wang, Y. Liu, Z. Zhang, Handbook of nanophase and nanostructured materials, Kluwer Academic/Plenum Publishers, New York, 2003.
  • [32] M. Jurczyk, J. Jakubowicz, Ceramic nanomaterials, Publishing House Poznan University of Technology, Poznań, 2004.
  • [33] V.G. Veselago, Elektrodinamika veshchestv s odnovremeno otricatelnymi znacheniami ε i μ, Usp. Fiz. Nauk 92 (1968) 517-529.
  • [34] D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite Medium with Negative Permeability and Permittivity, Physical Review Letters 84 (2000) 4184-4187.
  • [35] E. Cubukcu, K. Aydin, E. Ozbay S. Foteinopoulou, C.M. Soukoulis, Subwavelength resolution in a two-dimensional photonic-crystal-based superlens, Physical Review Letters 91(2003) 207401.
  • [36] E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C.M. Soukoulis, Electromagnetic waves: Negative refraction by photonic crystals, Nature 423 (2003) 604-605.
  • [37] K. Yu. Bliokh, Yu. P. Bliokh, What are the left-handed media and what is interesting about them, dostępne w EBP arXiv:physics/0408135, 2004.
  • [38] P. Markos, C.M. Soukoulis, Left-handed Materials, dostępne w EBP arXiv:condmat/0212136, 2002.
  • [39] A.L. Pokrovsky, A.L. Efros, Sign of refractive index and group velocity in left-handed media, Solid State Communications 124 (2002) 283-287.
  • [40] C.M. Krowne, Y. Zhang, Physics of Negative Refraction and Negative Index Materials, Springer, 2007.
  • [41] S.A. Ramakrishna, T.M. Grzegorczyk, Physics and applications of negative refractive index materials, SPIE Press and CRC Press, 2009.
  • [42] A. Klauzer-Kruszyna, Propagation of polarized light in selected superstructures aperiodic. PhD thesis, Wroclaw, 2005.
  • [43] S. Garus S, M. Duś-Sitek, E. Zyzik, Effect of iron impurities on the properties of transmission supergrid FexNi (1-x)/Cu. New Technologies and Developments in Metallurgy and Materials Science, Proceedings of the of the XII International Scientific Conference, Czestochowa, 2011.
  • [44] S. Garus, J. Garus, K. Pear, emulation of propagation of electromagnetic waves in superstructures using the FDTD algorithm, Emulation of electromagnetic wave propagation in superlattices using FDTD algorithm, New Technologies and Achievements in Metallurgy and Materials Engineering, Publisher WIPMiFS Częstochowa University of Technology (2012) 768-771.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c87f715d-9d4d-4f83-b99a-1fd591ebb275
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.