PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of shrinkage reducing admixture and expansive admixture on properties of mortars with Portland and slag cement

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ domieszki redukującej skurcz i domieszki ekspansywnej na właściwości zapraw z cementem portlandzkim i żużlowym
Języki publikacji
EN
Abstrakty
EN
Both shrinkage reducing admixtures (SRA) and expansive admixture (EXP) can be used to reduce the risk of cracking in concrete. Synergistic effect of using both of those admixtures simultaneously was a was found, however little information can be found on the effects of using both EXP and SRA on the properties of mortars and concrete other than shrinkage. Therefore in this paper, effect of adding both EXP and SRA on properties of mortars outside of their effect on shrinkage is researched. Mortars with Portland cement CEM I were modified by adding EXP and SRA in amount of full dose recommended by the producer, and half of the recommended dose. Research consisted of tests of properties of fresh mortars (consistency, initial setting time, hydration heat) and hardened mortars (compressive strength and drying shrinkage). It has been found that using both SRA and EXP admixtures leads to maintaining the same setting time which can be prolonged if only SRA is used, decreased compressive strength, possibility of increased consistency. Synergistic effect on shrinkage was also confirmed.
PL
Jednym z głównych problemów mogących powodować spadek trwałości betonu jest pękanie związane z jego skurczem. Zjawisko skurczu betonu jest jednym z częściej podnoszonych problemów w technologii betonu, ze względu na fakt, że w dojrzewającym betonie występuje wiele mechanizmów skurczu jednocześnie w różnych okresach, a różne rodzaje skurczu wymagają różnych metod jego redukcji. Aby spróbować ograniczyć skurcz, opracowano wiele metod, m.in. stosowanie środków ekspansywnych lub stosowanie domieszek zmniejszających skurcz (SRA). Środki ekspansywne służą do kompensacji skurczu poprzez pobudzenie reakcji tworzenia ekspansywnego etryngitu w pierwszych godzinach hydratacji, tak by kompensować redukcję objętości w wyniku skurczu chemicznego i autogenicznego. Mechanizm działania SRA jest natomiast łączony głównie z redukcją skurczu wysychania, ze względu na jego działanie związane z kilkoma równoczesnymi efektami zachodzącymi w jego obecności: obniżenie napięcia kapilarnego na skutek niskiego napięcia powierzchniowego oraz stworzenie struktury z mniejszymi porami pojawiającymi się na skutek obniżonego napięcia powierzchniowego, co pozwala na utrzymanie wysokiej wilgotności względnej. W celu lepszej redukcji skurczu podjęto próby stosowania obydwu domieszek jednocześnie, otrzymując bardzo dobre wyniki redukcji skurczu; problemem w powszechniejszym zastosowaniu tej metody jest niewielka ilość informacji o wpływie stosowania domieszki SRA i ekspansywnej na raz na inne właściwości betonów i zapraw. Dlatego w niniejszym artykule przedstawiono analizę wpływu stosowania zarówno domieszki ekspansywnej (EXP) jak i SRA na właściwości zapraw. Zaprawy z cementem portlandzkim CEM I 42.5R (OPC) i CEM III/A 32.5N-LH/HSR/NA (SC) modyfikowano dodając dostępne na rynku domieszki EXP i SRA w ilości pełnej dawki zalecanej przez producenta i połowy zalecanej dawki. Testy przeprowadzono zarówno na zaprawach z tylko jedną domieszką, jak i na ich kombinacji. Badania obejmowały badania właściwości zapraw świeżych (konsystencja, czas początku wiązania, ciepło hydratacji) oraz zapraw stwardniałych (wytrzymałość na ściskanie i skurcz wysychania).
Rocznik
Strony
337--353
Opis fizyczny
Bibliogr. 59 poz., il., tab.
Twórcy
  • Silesian University of Technology, Faculty of Civil Engineering, Gliwice, Poland
  • Silesian University of Technology, Faculty of Civil Engineering, Gliwice, Poland
Bibliografia
  • [1] J.J. Brooks, “Shrinkage of Concrete”, in Concrete and Masonry Movements. Butterworth-Heinemann, 2015, pp. 137-185, DOI: 10.1016/b978-0-12-801525-4.00006-6.
  • [2] A.M. Neville, J.J. Brooks, Concrete technology. Prentice Hall, 2010, DOI: 10.4135/9781412975704.n88.
  • [3] W. Kurdowski, Cement and Concrete Chemistry. Springer, 2014, DOI: 10.1007/978-94-007-7945-7.
  • [4] L. Wu, N. Farzadnia, C. Shi, Z. Zhang, H. Wang, “Autogenous shrinkage of high performance concrete: A review”, Construction and Building Materials, 2017, vol. 149, pp. 62-75, DOI: 10.1016/j.conbuildmat.2017.05.064.
  • [5] F.M. Lea, The Chemistry of Cement and Concrete. Chemical Publishing Co, USA, 1971.
  • [6] J. Pawluk, “Rodzaje skurczu betonu jego znaczenie i metody zapobiegania /Concrete shrinkage, its importance and prevention methods”, Cement Lime Concrete, 2018, no. 4, pp. 290-297.
  • [7] Folker H. Wittmann, “Heresies on creep and shrinkage mechanisms”, in: Conference: Creep, Shrinkage and Durability Mechanics of Concrete and Concrete Structures. At: Ise-Shima, Japan. vol. 1: Micro structural characterization and mciro-mechanics of creep and shrinkage. Ise-Shima, Japan, 2008, pp. 129-161.
  • [8] J.A. Almudaiheem, “Prediction of Drying Shrinkage of Portland Cement Paste: Influence of Shrinkage Mechanisms”, Journal of King Saud University - Engineering Sciences, 1991, vol. 3, no. 1, pp. 69-86, DOI: 10.1016/S1018-3639(18)30538-5.
  • [9] N.P. Tran, C. Gunasekara, D.W. Law, S. Houshyar, S. Setunge, A. Cwirzen, “A critical review on drying shrinkage mitigation strategies in cement-based materials”, The Journal of Building Engineering, 2021, vol. 38, DOI: 10.1016/j.jobe.2021.102210.
  • [10] D.P. Bentz, O.M. Jensen, “Mitigation strategies for autogenous shrinkage cracking”, Cement and Concrete Composites, 2004, vol. 26, no. 6, pp. 677-685, DOI: 10.1016/S0958-9465(03)00045-3.
  • [11] J.W. Bullard, H.M. Jennings, R. Livingston, A. Nonat, G.W. Scherer, J.S. Schweitzer, K. Scrivener, J.J. Thomas, “Mechanisms of cement hydration”, Cement and Concrete Research, 2011, vol. 41, pp. 1208-1223.
  • [12] L. Barcelo, M. Moranville, B. Clavaud, “Autogenous shrinkage of concrete: A balance between autogenous swelling and self-desiccation”, Cement and Concrete Research, 2005, vol. 35, pp. 177-183, DOI:10.1016/j.cemconres.2004.05.050.
  • [13] E. Fehling, M. Schmidt, J. Walraven, T. Leutbecher, S. Fröhlich, “Principles for the production of UHPC”, in: Ultra-High Performance Concrete. UHPC, Wiley, 2014, pp. 5-22, DOI: 10.1002/9783433604076.ch02.
  • [14] S. Nagataki, H. Gem, “Expansive admixtures (mainly ettringite)”, Cement and Concrete Composites, 1998, vol. 20, no. 2-3, pp. 163-170, DOI: 10.1016/S0958-9465(97)00064-4.
  • [15] H.F.W. Taylor, Cement Chemistry, 2nd ed. London: Academic Press, 1990.
  • [16] C. Maltese, C. Pistolesi, A. Lolli, A. Bravo, T. Cerulli, D. Salvioni, “Combined effect of expansive and shrinkage reducing admixtures to obtain stable and durable mortars”, Cement and Concrete Research, 2004, vol. 35, pp. 2244-2251, DOI: 10.1016/j.cemconres.2004.11.021.
  • [17] L. Mo, M. Deng, A. Wang, “Effects of MgO-based expansive additive on compensating the shrinkage of cement paste under non-wet curing conditions”, Cement and Concrete Composites, 2012, vol. 34, no. 3, pp. 377-383, DOI: 10.1016/j.cemconcomp.2011.11.018.
  • [18] S. Nagataki, H. Gomi, “Expansive admixtures (mainly ettringite)”, Cement and Concrete Composites, 1998, vol. 20, pp. 163-170, DOI: 10.1016/s0958-9465(97)00064-4.
  • [19] D.P. Bentz, “Influence of shrinkage-reducing admixtures on early-age properties of cement pastes”, Journal of Advanced Concrete Technology, 2006, vol. 4, no. 3, pp. 423-429, DOI: 10.3151/jact.4.423.
  • [20] R. Gagné, “Shrinkage-reducing admixtures” in: Science and Technology of Concrete Admixtures.Woodhead Publishing, 2016, pp. 457-469, DOI: 10.1016/B978-0-08-100693-1.00023-0.
  • [21] W. Jackiewicz-Rek, J. Kuziak, B. Jaworska, “Analysis of the Properties of Expansive Concrete with Portland and Blast Furnace Cement”, Archives of Civil Engineering, 2018, vol. 64, pp. 175-196, DOI: 10.2478/ace-2018-0051.
  • [22] P. min Zhan, Z. hai He, “Application of shrinkage reducing admixture in concrete: A review”, Construction and Building Materials, 2019, vol. 201, pp. 676-690, DOI: 10.1016/j.conbuildmat.2018.12.209.
  • [23] R. Zana, Ed., Dynamics of Surfactant Self-Assemblies. Boca Raton: CRC Press, 2005, DOI: 10.1201/9781420028225.
  • [24] C.K. Nmai, R. Tomita, F. Hondo, J. Buffenbarger, “Shrinkage-Reducing Admixtures”, Concrete International, 1998, vol. 20, no. 44, pp. 31-37.
  • [25] F. Rajabipour, G. Sant, J. Weiss, “Interactions between shrinkage reducing admixtures (SRA) and cement paste’s pore solution”, Cement and Concrete Research, 2008, vol. 38, no. 5, pp. 606-615, DOI: 10.1016/j.cemconres.2007.12.005.
  • [26] J. Saliba, E. Rozière, F. Grondin, A. Loukili, “Influence of shrinkage-reducing admixtures on plastic and long-term shrinkage”, Cement and Concrete Composites, 2011, vol. 33, no. 2, pp. 209-217, DOI: 10.1016/j.cemconcomp.2010.10.006.
  • [27] G. Sant, B. Lothenbach, P. Juilland, G. Le Saout, J. Weiss, K. Scrivener, “The origin of early age expansions induced in cementitious materials containing shrinkage reducing admixtures”, Cement and Concrete Research, 2011, vol. 41, no. 3, pp. 218-229, DOI: 10.1016/j.cemconres.2010.12.004.
  • [28] J. Weiss, P. Lura, F. Rajabipour, G. Sant, “Performance of shrinkage-reducing admixtures at different humidities and at early ages”, ACI Materials Journal, 2008, vol. 105, pp. 478-486, DOI: 10.14359/19977.
  • [29] B. Rongbing, S. Jian, “Synthesis and evaluation of shrinkage-reducing admixture for cementitious materials” Cement and Concrete Research, 2005, vol. 35, no. 3, pp. 445-448, DOI: 10.1016/j.cemconres.2004.07.009.
  • [30] L. Maia, H. Figueiras, S. Nunes, M. Azenha, J. Figueiras, “Influence of shrinkage reducing admixtures on distinct SCC mix compositions”, Construction and Building Materals, 2012, vol. 35, pp. 304-312, DOI: 10.1016/j.conbuildmat.2012.02.033.
  • [31] T.R. Naik, R.N. Kraus, Y. Chun Fethullah, “Performance of Cementitious Materials in Concrete with Shrinkage-Reducing Admixtures”, presented at 8th CANMET/ACI International Conference Superplasticizer Other Chemical Admixtures Concrete, Oct. - Novemb. 2006, Sorrento, Italy, 2006, pp. 1-16.
  • [32] A.B. Eberhardt, On the mechanisms of shrinkage reducing admixtures in self consolidating mortars and concretes. Dissertation zur Erlangung des akademischen Grades. Weimar: Fakultät Bauingenieurwesen der Bauhaus Universität Weimar, 2010.
  • [33] Z. He, Z.J. Li, M.Z. Chen, W.Q. Liang, “Properties of shrinkage-reducing admixture-modified pastes and mortar”, Materials and Structures, 2006, vol. 39, pp. 445-453, DOI: 10.1007/s11527-005-9004-9.
  • [34] M. Zaichenko, A. Nazarova, Q. Marshdi, “Effect of expansive agent and shrinkage reducing admixture in shrinkage-compensating concrete under hot-dry curing environment”, Teka. Commission of Motorization and Power Industry in Agriculture, 2014, vol. 14, no. 2, pp. 170-178.
  • [35] D.Y. Yoo, N. Banthia, Y.S. Yoon, “Effectiveness of shrinkage-reducing admixture in reducing autogenous shrinkage stress of ultra-high-performance fiber-reinforced concrete”, Cement and Concrete Composites, 2015, vol. 64, pp. 27-36, DOI: 10.1016/j.cemconcomp.2015.09.005.
  • [36] I. Demir, Ö. Sevim, E. Tekin, “The effects of shrinkage-reducing admixtures used in self-compacting concrete on its strength and durability”, Construction and Building Materials, 2018, vol. 172, pp. 153-165, DOI: 10.1016/j.conbuildmat.2018.03.250.
  • [37] C. Li, Q.Wang, J. Chen, S. Jia, L. Jiang, J. He, “Effect of polyether-type SRA on the drying shrinkage, pore structure and properties of blended mortar incorporating limestone powder”, Construction and Building Materials, 2020, vol. 264, DOI: 10.1016/j.conbuildmat.2020.120173.
  • [38] J. Han, H. Fang, K. Wang, “Design and control shrinkage behavior of high-strength self-consolidating concrete using shrinkage-reducing admixture and super-absorbent polymer”, The Journal of Sustainable Cement-Based Materials, 2014, vol. 3, pp. 182-190, DOI: 10.1080/21650373.2014.897268.
  • [39] M. Gesoğlu, E. Güneyisi, M.E. Kocabağ, V. Bayram, K. Mermerdaş, “Fresh and hardened characteristics of self compacting concretes made with combined use of marble powder, limestone filler, and fly ash”, Construction and Building Materials, 2012, vol. 37, pp. 160-170, DOI: 10.1016/j.conbuildmat.2012.07.092.
  • [40] N. Quangphu, J. Linhua, L. Jiaping, T. Qian, D. Tienquan, “Influence of shrinkage-reducing admixture on drying shrinkage and mechanical properties of high-performance concrete”, Water Science and Engineering, 2008, vol. 1, no. 4, pp. 67-74, DOI: 10.3882/j.issn.1674-2370.2008.04.007.
  • [41] R. Gagné, B. Bissonnette, R. Morin, M. Thibault, “Innovative concrete overlays for bridge-deck rehabilitation in Montréal”, in Concrete Repair, Rehabilitation and Retrofitting II 2nd International Conference on Concrete Repair, Rehabilitation and Retrofitting, ICCRRR-2, 24-26 November 2008, Cape Town, South Africa. CRC Press, 2009, pp. 351-352, DOI: 10.1201/9781439828403.ch135.
  • [42] A. Schießl, W. Weiss, J. Shane, N.S. Berke, T.O. Mason, S. Shah, “Assessing the moisture profile of drying concrete using impedance spectroscopy”, Concrete Science and Engineering Journal, 2000, vol. 2, pp. 106-116.
  • [43] M.J. Oliveira, A. Bettencourt Ribeiro, F.G. Branco, “Combined effect of expansive and shrinkage reducing admixtures to control autogenous shrinkage in self-compacting concrete”, Construction and Building Materials, 2014, vol. 52, pp. 267-275, DOI: 10.1016/j.conbuildmat.2013.11.033.
  • [44] M.S. Meddah, M. Suzuki, R. Sato, “Influence of a combination of expansive and shrinkage-reducing admixture on autogenous deformation and self-stress of silica fume high-performance concrete”, Construction and Building Materials, 2011, vol. 25, no. 1, pp. 239-250, DOI: 10.1016/j.conbuildmat.2010.06.033.
  • [45] V. Corinaldesi, “Combined effect of expansive, shrinkage reducing and hydrophobic admixtures for durable self compacting concrete”, Construction and Building Materials, 2012, vol. 36, pp. 758-764, DOI: 10.1016/j.conbuildmat.2012.04.129.
  • [46] EN 196-1:2016 Methods of testing cement. Determination of strength.
  • [47] EN 196-3:2016 Methods of testing cement. Determination of setting times and soundness.
  • [48] PN-EN 1015-3:2000 Methods of test for mortar for masonry Determination of consistence of fresh mortar (by flow table).
  • [49] EN 1015-4:1999 Methods of test for mortar for masonry. Determination of consistence of fresh mortar (by plunger penetration).
  • [50] PN-84/B-06714/24 Kruszywa mineralne. Oznaczanie zmian objętościowych metoda Graf-Kaufmana (Mineral aggregate. Measuring volume changes with Graf-Kaufman method) (in Polish).
  • [51] P. Czapik, J. Zapała-Sławeta, Z. Owsiak, P. Stępień, “Hydration of cement by-pass dust”, Construction and Building Materials, 2020, vol. 231, art. ID 117139, DOI: 10.1016/j.conbuildmat.2019.117139.
  • [52] M. Gruszczyński, “Spostrzeżenia z badań efektywności domieszek redukujących skurcz betonu, (Observations from the research on the effectiveness of admixtures reducing shrinkage of concrete)”, Przegląd budowlany, 2019, vol. 65, no. 2, pp. 17-23 (in Polish).
  • [53] V. Gregorova, Z. Stefunkova, M. Ledererova, “Effects of expansive additive on cement composite properties”, IOP Conference Series: Materials Science and Engineering, 2018, vol. 385, art ID 012015, DOI: 10.1088/1757-899X/385/1/012015.
  • [54] L. Senff, P.A. Barbetta, W.L. Repette, D. Hotza, H. Paiva, V.M. Ferreira, J.A. Labrincha, “Mortar composition defined according to rheometer and flow table tests using factorial designed experiments”, Construction and Building Materials, 2009, vol. 23, no. 10, pp. 3107-3111, DOI: 10.1016/j.conbuildmat.2009.06.028.
  • [55] D.P. Bentz, M.R. Geiker, K.K. Hansen, “Shrinkage-reducing admixtures and early-age desiccation in cement pastes and mortars”, Cement and Concrete Research, 2001, vol. 31, no. 7, pp. 1075-1085, DOI: 10.1016/S0008-8846(01)00519-1.
  • [56] J.Y. Wang, N. Banthia, M.H. Zhang, “Effect of shrinkage reducing admixture on flexural behaviors of fiber reinforced cementitious composites”, Cement and Concrete Composites, 2012, vol. 34, no. 4, pp. 443-450, DOI: https://doi.org/10.1016/j.cemconcomp.2011.12.004.
  • [57] T.F. Yuan, S.K. Kim, K.T. Koh, Y.S. Yoon, “Synergistic benefits of using expansive and shrinkage reducing admixture on high-performance concrete”, Materials, 2018, vol. 11, no. 12, art ID. 2514, DOI: 10.3390/ma11122514.
  • [58] Y. Dang, J. Qian, Y. Qu, L. Zhang, Z. Wang, D. Qiao, X. Jia, “Curing cement concrete by using shrinkage reducing admixture and curing compound”, Construction and Building Materials, 2013, vol. 48, pp. 992-997, DOI: 10.1016/j.conbuildmat.2013.07.092.
  • [59] R.I.A. Malek, D.M. Roy, Y. Fang, “Pore Structure, Permeability, And Chloride Diffusion In Fly Ash-And Slag-Containing Pastes And Mortars”, MRS Online Proceedings Library, 1988, vol. 137, pp. 403-410, DOI: 10.1557/PROC-137-403.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c87b7461-a8a0-49a4-a4d2-63939682c03b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.