PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Distribution of peak ground vibration caused by mining induced seismic events in the Upper Silesian Coal Basin in Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The solutions presented permit the practical determination of the physical parameters of peak ground vibration, caused by strong mining tremors induced by mining, in the Polish part of the Upper Silesian Coal Basin (USCB). The parameters of peak ground horizontal velocity (PGVH) and peak ground horizontal acceleration (PGAH10) at any point of earth’s surface depend on seismic energy, epicentral distance and site effect. Distribution maps of PGVH and of PGAH10 parameters were charted for the period 2010-2019. Analysis of the results obtained indicates the occurrence of zones with increased values of these parameters. Based on the Mining Seismic Instrumental Intensity Scale (MSIIS-15), which is used to assess the degree of vibration intensity caused by seismic events induced by mining, and using the PGVH parameter, it was noted that the distribution map of this parameter includes zones where there vibration velocities of both 0.04 m/s and 0.06 m/s were exceeded. Vibrations with this level of PGVH correspond to intensities in the V and VI degree according to the MSIIS-2015 scale, which means that they can already cause slight structural damage to building objects and cause equipment to fall over. Moreover, the reason why the second parameter PGAH10 is less useful for the evaluation of the intensity of mining induced vibrations is explained. The PGAH10 vibration acceleration parameter, in turn, can be used to design construction of the objects in the seismic area of the Upper Silesian Coal Basin, where the highest acceleration reached a value of 2.8 m/s2 in the period from 2010 to 2019.
Rocznik
Strony
419--432
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
  • Central Mining Institute, 1 Gwarków Sq., 40-166 Katowice, Poland
  • Central Mining Institute, 1 Gwarków Sq., 40-166 Katowice, Poland
  • Central Mining Institute, 1 Gwarków Sq., 40-166 Katowice, Poland
Bibliografia
  • [1] Chodacki J., 2014. Regional relations of damping of acceleration in the area of the Upper Silesian Coal Basin. Wiadomości Górnicze 7-8,387-395 (in Polish).
  • [2] Chodacki J., 2016. New Ground Motion Prediction Equation for Peak Ground Velocity and Duration of Ground Motion for Mining Tremors in Upper Silesia. Acta Geophysica 64 (6), 2449-2470. https://doi.org/10.1515/acgeo-2016-0109.
  • [3] Cesca S., Dost B., Oth A., 2013. Preface to the special issue “Triggered and induced seismicity: probabilities and dis-crimination. Journal of Seismology 17 (1), 1-4. https://doi.org/10.1007/s10950-012-9338-z.
  • [4] Dou L.M., Mu Z.L., Li Z.L., Cao A.Y., Gong, S.Y., 2014. Research progress of monitoring, forecasting, and preven-tion of rockburst in underground coal mining in China. International Journal of Coal Science and Technology 1, 278-288.
  • [5] Dubiński J., Mutke G., 2009. Experiences from using the intensity scale of mining seismic events (GSI-GZW ) in Polish coal mines. In A. Sroka (ed.), Scientific Work of Technische Universitat Bergakademie Freiberg, 10. Geokinematischer Tag, 125-135. Essen: VGE Verlag GmbH.
  • [6] Dubiński J., Mutke G., 2011. Selected relations between earthquakes and mining seismic events recorded in Polish coal mines. In Eskikaya S. (ed.) Proceedings of 22nd World Mining Congress Istanbul-2011, vol. I, 350-357.
  • [7] Dubiński J., Stec K., Mutke G., 2017. Relationship between the focal mechanism of magnitude ML 3.3 seismic event induced by mining and distribution of peak ground velocity. E3S Web of Conferences.
  • [8] FENG Xia-Ting (ed.), 2018. Rockburst: Mechanism, Monitoring, Warning and Mitigation. Butterworth-Heinemann; 1 edition, p. 570. ISBN-13: 978-0128050545.
  • [9] Foulger G., Wilson M., Gluyas J., Julian B., Davies R., 2018. Global review of human-induced earthquakes. Earth-Science Reviews 178, 438-514. http://dx.doi.org/10.1016/ j.earscirev. 2017.07.008.
  • [10] Holub K., Rusajova J., Holecko J., 2013. Current induced seismicity in the Paskov mine field (Ostrava region). Acta Geodyn. Geomater. 10 (2), (170), 181-187. DOI: 10.13168/AGG.2013.0018.
  • [11] Kaláb Z., Knejzlik J., 2012. Examples of rotational component records of mining induced seismic events from Karviná region. Acta Geodynamica et Geomaterialia 9, (2), 173-178.
  • [12] Kozłowska M., Orlecka-Sikora B., Rudziński Ł., Cielesta S., Mutke G., 2016. Atypical evolution of seismicity patterns resulting from the coupled natural, human-induced and coseismic stresses in a longwall coal mining environment. Int. J. Rock Mech. Mining Sci. 86, 5-15. DOI: 10.1016/j.ijrmms.2016.03.024.
  • [13] Lasocki S., Idziak A., 1998. Dominant directions of epicenter distribution of regional mining-induced seismicity series in Upper Silesian Coal Basin in Poland. Pure Appl. Geophys. 153, 1, 21-40. DOI: 10.1007/s000240050183.
  • [14] Mutke G., Dworak J., 1992. Factors determining the effect of mining seismic events on buildings in the Upper Silesian Coal Basin. Selected issues of the geophysical studies in the mines – Lubiatów 1991, Publs. Inst. Geophys. Pol. Acad. Sc., M-16, 245, 115-130, (in Polish).
  • [15] Mutke G., Chodacki J., Muszyński L., Kremers S., Fritschen R., 2015. Mining Seismic Instrumental Intensity Scale MSIIS-15 – verification in coal basines. AIMS 2015 - Fifth Int. Symp.: Mineral Resources and Mine Development. RWTH Aachen University 14, 551-560 (ISBN 978-3-941277-22-9).
  • [16] Mutke G., Dubiński J., Lurka A., 2015. New criteria to assess seismic and rock burst hazard in coal mines. Archive of Mining Sciences 60 (3), 743-760. DOI: 10.1515/amsc-2015-0049.
  • [17] Mutke G., Dubiński J., 2016. Seismic intensity induced by mining in relations to weak earthquakes. Proc. of the 24th World Mining Congress. Part. Underground Mining. Rio de Janeiro, 399-407.
  • [18] Mutke G., 2019. Impact of mining seismic tremors on the surface. GIG Publishing House. ISBN 978-83-65503-21-3 (in Polish).
  • [19] Mutke G., Kotyrba A.,Lurka A., Olszewska D., Dykowski P., Borkowski A., Araszkiewicz A., Barański A., 2019. Upper Silesian Geophysical Observation System A unit of the EPOS project. Journal of Sustainable Mining Volume 18 (4), 198-207. doi.org/10.1016/j.jsm.2019.07.005.
  • [20] Olszewska D., Mutke G., 2018. A study of site effect using surface-downhole seismic data in a mining area. 16th European Conference on Earthquake Engineering. Thessaloniki, June 2018.
  • [21] Orlecka-Sikora B., Lasocki S., Kocot J., Szepieniec T., Grasso J.R., Garcia-Aristizabal A., Schaming M., Urban P., Jones G., Stimpson I., Dineva S., Sałek P., Leptokaropoulos K., Lizurek G., Olszewska D., Schmittbuhl J., Kwiatek G., Blanke A., Saccorotti G., Chodzińska K., Rudziński Ł., Dobrzycka I., Mutke G., Barański A., Pierzyna A., Kozlovskaya E., Nevalainen J., Kinscher J., Sileny J., Sterzel M., Cielesta S., Fischer T., 2020. An open data infra-structure for the study of anthropogenic hazards linked to georesource exploitation. Scientific Data 7 (89), https://doi.org/10.1038/s41597-020-0429-3.
  • [22] Pachla F., Kowalska-Koczwara A., Tatara T., Stypuła K., 2019. The influence of vibration duration on the structure of irregular RC building. Bull. Earthquake Eng. 1-20. https://doi.org/10.1007/s10518-018-00546-4.
  • [23] Ptacek J., 2020. Rockburst in Ostrava-Karvina Coalfield. Symposium of the International Society for Rock Mechanics. Procedia Engineering 191 ( 2017), 1144-115. Elsevier.
  • [24] Savarienskij E.F., 1959. Evaluation of the impact of nearsurface layer on the amplitude of ground motion. Izv. Akad. Nauk SSSR Geofizyka 10, 1441-1447, (in Russian).
  • [25] Trifunac M.D., Brady A.G., 1975. A study on the duration of strong earthquake ground motion. Bulletin of the Seismo-logical Society of America 65 (3), 581-626.
  • [26] Wald D.J., Quitoriano V., Heaton T.H., Kanamori H., 1999. Relationship between peak ground acceleration, peak ground velocity, and Modified Mercalli Intensity in California. Earthq. Spectra 15 (3), 557-564, DOI: 10.1193/1.1586058.
  • [27] Zembaty Z., Kokot S., Bozzoni F., Scandella L., Lai C.G., Kuś J., Bobra P., 2015. A system to mitigate deep mine tremor effects in the design of civil infrastructure. International Journal of Rock Mechanics and Mining Sciences 74, 81-90. https://doi.org/10.1016/j.ijrmms.2015.01.004.
  • [28] COMEX Project., 2015. Complex Mining Exploitation: optimizing mine design and reducing the impact on human environ-ment (2012-2015). RFCS-PR-11012. Deliverable 1.4.: New European Mining Seismic Intensity Scale – MSIIS-15.
  • [29] EN1998-1.Eurocode8. Design of structures for earthquake resistance, 2005.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c876296c-a25c-40c5-8562-6c8aa321d645
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.