PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An integrated treatment technology for ground fissures of shallow coal seam mining in the mountainous area of southwestern China: a typical case study

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zintegrowana technologia zapobiegania pęknięciom gruntu w procesie wydobywania płytkich pokładów węgla w górzystym obszarze południowo-zachodnich Chin: typowe studium przypadku
Języki publikacji
EN
Abstrakty
EN
This article is the result of treatments on ground fissures for environmental protection and scientific shallow coal seam mining. In the southwestern mining area of China, the traditional longwall mining method has caused a large area of surface sinkhole, ground fissures, vegetation deterioration and disorderly coal gangue. To solve these problems, an integrated treatment technology that includes ground fissure treatment technology and underground backfilled technology was proposed as a solution. The technical principle and technical process were explained in detail; the ground fissure treatment technology involves a “three-step treatment method”, and the underground backfilled technology adopted a strip mining method with backfilling technology. The compression mechanical behavior of backfilled material, including coal gangue, fly ash and ordinary Portland cement, was studied; the mixed ratio of 1:0.3:0.18 was selected. In addition, the vertical stress, vertical displacement and plastic zone of the coal pillar were determined by FLAC3D numerical simulation, and a rational mining scheme of “11 m mining width, 2 m coal pillar width” was determined to be appropriate because of the lower vertical stress, smaller vertical displacement and better supporting capacity of the coal pillar. The monitoring results of ground sinkhole indicated that the maximal ground sinkhole deformation was 17.3 cm, and the deformation showed few changes after this technology was implemented. The treatment capacity of coal gangue and fly ash reached 821.150 t per year, and the vegetation survival rate of the ground fissure treatment area reached 85%. This integrated treatment technology could effectively control ground fissures and surface sinkhole as well as protect the environment.
PL
Artykuł jest opisem zapobiegania pęknięciom gruntu w celu ochrony środowiska, jak również naukowego podejścia do wydobywania płytko zalegających pokładów węgla. W południowo-zachodniej części górniczej Chin tradycyjna, ścianowa metoda wydobywania węgla, powodowała duży obszar powierzchniowego zapadliska, pęknięcia gruntu, pogorszenie stanu wegetacji roślin. W celu rozwiązania tych problemów zaproponowano zintegrowaną technologię zapobiegania, która obejmuje technologię zapobiegania pęknięciom gruntu i podziemną technologię podsadzki. Zasada i proces techniczny zostały szczegółowo opisane; technologia zapobiegania pęknięciom gruntu obejmuje „trójstopniową metodę zabiegu”, a technologia podsadzki zaadoptowała metodę wydobywania węgla pasami. Badano ściśliwość podsadzki, w tym odpadów węglowych, popiołu lotnego i zwykłego cementu portlandzkiego; wybrano mieszaninę o stosunku 1: 0,3: 0,18. Ponadto pionowe naprężenie, pionowe przemieszczenie i strefa plastyczności filaru węglowego zostały określone za pomocą symulacji numerycznej FLAC 3D. Racjonalny schemat wydobycia „szerokość wydobycia 11 m, szerokość filaru węglowego 2 m” był odpowiedni ze względu na niższą wartość naprężenia pionowego, mniejsze pionowe przemieszczenie i lepszą nośność filaru węglowego. Wyniki monitoringu pęknięć gruntu wskazują, że maksymalna deformacja gruntu wynosiła 17,3 cm i wykazała kilka zmian po wdrożeniu tej technologii. Ilość zagospodarowanych odpadów węglowych i popiołu lotnego wynosiła 821 150 Mg na rok, a wskaźnik przeżycia roślinności w obszarze zapobiegania pęknięciom gruntu osiągnął poziom 85%. Ta zintegrowana technologia zapobiegania może skutecznie kontrolować pęknięcia gruntu i deformację powierzchni, a także chronić środowisko.
Twórcy
autor
  • China University of Mining and Technology, Beijing, China
autor
  • China University of Mining and Technology, Beijing, China
autor
  • China University of Mining and Technology, Beijing, China
autor
  • China University of Mining and Technology, Beijing, China
Bibliografia
  • [1] Adibee et al. 2013 – Adibee, N., Osanloo, M. and Rahmanpour, M. 2013. Adverse effects of coal mine waste dumps on the environment and their management. Environmental Earth Sciences (70), pp. 1581–1592.
  • [2] Ashok, Jaiswal and Shrivastva, B.K. 2009. Numerical simulation of coal pillar strength. International Journal of Rock Mechanics and Mining Sciences 46, pp. 779–788.
  • [3] Bell, F.G. and Genske, D.D. 2001. The influence of subsidence attributable to coal mining on the environment, development and restoration: Some examples from Western Europe and South Africa. Environmental & Engineering Geoscience 7(1), pp. 81–99.
  • [4] Bian et al. 2010 – Bian, Z.F., Miao, X.X., Lei, S.G., Chen, S.E., Wang, W.F. and Struthers, S. 2010. The Challenges of Reusing Mining and Mineral-Processing Wastes. Science 337, pp. 702–704.
  • [5] Dai et al. 2014 – Dai, H.Y., Guo, J.T., Yan, Y.G., Li, P.X. and Liu, Y.S. 2014. Principle and application of subsidence control technology of mining coordinately mixed with backfilling and keeping. Journal of China Coal Society 39(8), pp. 1602–1610.
  • [6] Fabiańska et al. 2013 – Fabiańska, M.J., Ciesielczuk, J., Kruszewski, Ł., Misz-Kennan, M., Blake, D.R., Stracher, G. and Moszumańska, I. 2013. Gaseous compounds and efflorescences generated in self-heating coal-waste dumps – A case study from the Upper and Lower Silesian Coal Basins (Poland). International Journal of Coal Geology 117, pp. 247–261.
  • [7] Ghasemi et al. 2012 – Ghasemi, E., Ataei, M., Shahriar, K., Sereshki, F., Jalali, S.E. and Ramazanzadeh, A. 2012. Assessment of roof fall risk during retreat mining in room and pillar coal mines. International Journal of Rock Mechanics and Mining Sciences 54, pp. 80–89.
  • [8] Guo et al. 2014 – Guo, Y.X., Zhang, Y.Y. and Cheng, F.Q. 2014. Industrial development and prospect about comprehensive utilization of coal gangue. CIESC Journal 65(7), pp. 2443–2453.
  • [9] Huang et al. 2015 – Huang, Y., Tian, F., Wang, Y., Wang, M. and Hu, Z. 2015. Effect of coal mining on vegetation disturbance and associated carbon loss. Environmental Earth Sciences (73), pp. 2329–2342.
  • [10] Hui et al. 2016 – Liu. H., Liu. X.Y., Deng. K.Z., Lei S.G. and Bian, Z.F. 2016. Developing law of sliding ground fissures based on numerical simulation using UDEC. Journal of China Coal Society 41(3), pp. 625–632.
  • [11] Liu et al. 2012 – Liu, G.L., Fan, K.G. and Xiao, T.Q. 2012. Research on Working Resistance of Mining Working Face in Mountainous Buried Coal Seam. Chinese Journal of underground space and engineering 8(8), pp. 1034–1040.
  • [12] Li et al. 2017 – Li, L., Wu. K., Hu. Z., Xu, Y. and Zhou, D. 2017. Analysis of developmental features and causes of the ground cracks induced by oversized working face mining in an aeolian sand area. Environmental Earth Sciences 76(3), pp. 1–12.
  • [13] Mohseni et al. 2017 – Mohseni, N., Sepehr, A., Hosseinzadeh, S.R., Golzarian, M.R. and Shabani, F. 2017. Variations in spatial patterns of soil–vegetation properties over subsidence-related ground fissures at an arid ecotone in northeastern Iran. Environmental Earth Sciences 76(6), pp. 1–13.
  • [14] Ning, C.X. 2017. China coal production structure prediction in 2030 based upon Markov chain. China coal 1(43), pp. 11–15.
  • [15] Singh et al. 2011 – Singh, A.K., Singh, R., Maiti, J., Kumar, R. and Mandal, P.K. 2011. Assessment of mining induced stress development over coal pillars during depillaring. International Journal of Rock Mechanics and Mining Sciences 48(5), pp. 805–818.
  • [16] Tan et al. 2017 – Tan, W., Wang, L. and Huang, C. 2017. Environmental Effects Environmental effects of coal gangue and its utilization. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38(24), pp. 3716–3721.
  • [17] Wang et al. 2011 – Wang, H.W., Poulsen, Brett A., Shen, B.T., Xue, S. and Jiang, Y.D. 2011. The influence of roadway backfill on the coal pillar strength by numerical investigation. International Journal of Rock Mechanics and Mining Sciences 48(3), pp. 443–450.
  • [18] Wang et al. 2013 – Wang, H.W., Jiang, Y.D. and Zhao, Y.X. 2013. Numerical Investigation of the Dynamic Mechanical State of a Coal Pillar During Longwall Mining Panel Extraction. Rock Mechanics & Rock Engineering (46), pp. 1211–1221.
  • [19] Yang et al. 2016 – Yang, Z., Zhang, Y., Liu, L., Wang, X. and Zhang, Z. 2016. Environmental investigation on cocombustion of sewage sludge and coal gangue: SO2 , NOx and trace elements emissions. Waste Management 50(x), pp. 213–221.
  • [20] Zhang et al. 2014 – Zhang, Q., Zhang, J.X., Ju, F., Li, M. and Geng, D.K. 2014. Backfill body’s compression ratio design and control theory research in solid backfill coal mining. Journal of China Coal Society 39(1), pp. 64–71.
  • [21] Zhou, W.X. and Chen, X.Y. 2014. A case study on Bijie city: Relation between coal enriching areas and economic growth. Resources & industries 16(3), pp. 132–136.
  • [22] Zhu et al. 2014 – Zhu, H.Z., Liu, P. and Song, G.P. 2014. Field test research on large amplitude mountain shallow buried coal seam pressure behavior. Science Technology and Engineering 28(14), pp. 195–199.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c87112c1-bc28-40b2-bcc1-a13aea64e030
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.