PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selected properties of the halloysite as a component of Geosynthetic Clay Liners (GCL)

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of this paper was to present some properties of halloysite and its applications as a component of Geosynthetic Clay Liners (GCL). The following article presents results of comparative tests of the influence of different factors on the halloysite and halloysite - bentonite mixture properties. Design/methodology/approach: Many studies including SEM, XRD, FTIR, EDS, ICP and XRF have been made to examine the halloysite and halloysite - bentonite mixture properties. Findings: Influence of the halloysite additive on characteristics of sealing GCL properties. Research limitations/implications: Studies described in this work should help to improve composition and optimize parameters of sealing clay mixtures improving activities and functioning of GCL during a long period of time. Comparison of the effects of the halloysite additive on characteristics of sealing clay layers properties and the possibility of its application in this area. Practical implications: Knowledge about changing of GCL properties during long time exploitation in landfills allows for selection of theirs main sealing parameters. The wrong choice of GCL parameters leads to multiplication of environmental costs and pollution of the area around storage place. Originality/value: Halloysite shows high sorption properties in relation to toxic heavy metals (eg cadmium, lead) and solutions containing harmful hydrocarbons, eg benzene, as well as toxic gases (ammonia, hydrogen sulfide). They are in aqueous solutions, therefore, their capacity for migration through protective barriers sometimes pose a growing threat to the environment. Using halloysite as a component of GCL significantly reduced this problem. The halloysite additive to GCL reduces the vulnerability of the sealing barrier towards the influence of calcium ions improving quality and durability of mineral insulation.
Rocznik
Strony
177--191
Opis fizyczny
Bibliogr. 59 poz., rys.
Twórcy
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Department of Mineral Processing and Utilization, Faculty of Mining and Geology, ul. Akademicka 2, 44-100 Gliwice, Poland
Bibliografia
  • [1] J. Young, K. Katsumi, C.H. Benson, T.B. Edil, Hydraulic conductivity and swelling of non prehydrated GCLs permeated with single-species salt solutions, Journal of Geotechnical And Geoenviromental Engineering 127 (2001) 557-567.
  • [2] G. Al. Her, J. Evans, H. Fang, K. Witmer, Influence of inorganic permanents upon the permeability of bentonite, Hydraulic Barriers In Soil and Rocks, Stp 874, Astm, West Conshohocken, (1985) 64-73.
  • [3] M. Valakostas, S. Traganitis, K. Aravossis, A. Kungolos, Innovative technical and environmental aspects in planning, constructing and operating the sanitary landfill of larissa, Proceedings of the 8th International Conference on Environmental Science and Technology, Lemnos Island, 2003, 872-885.
  • [4] Trisoplast - The innovative mineral barrier Dipl. Geol. Mike Naismith, Documentation (Gid Milietechnik BV) Po Box 18, 5303 A Kerkdrel, The Netherlands, Katowice, 2004.
  • [5] T. Egloffstein, Properties and test methods to assess bentonite used in Geosynthetic Clay Liners, Geosynthetic Clay, Balkema, Rotterdam, 51-72.
  • [6] F. Zhang, P. Low, C Roth, Effects of monovalent exchangeable cations and electrolytes relation between swelling pressure and interlayers distance in montmorillonite, Journal of Colloid and Interface Science 173 (1995) 34-41.
  • [7] M. Auboiroux, D. Guyonnet, J.-C. Touray, F. Bergaya, Cation exchange in GCL and compacted clay liners in contact with landfill leachate, Proceedings of the 17th International Waste and Landfill Symposium Sardninia’99, Cagliari, 1999, 4-8.
  • [8] F. Mazzieri, E. Pasqualini, Permeability of damaged Geosynthetic Clay Liners, Geosynthetic International 7 (2000) 101-118.
  • [9] D. Hayer, Basic examination on the efficiency of GCLs, Geosynthetic Clay Liners, Proceedings of the International Symposium Held in Nurnberg, Germany, 1994, 101-111.
  • [10] R.D. Hewitt, D.E. Daniel, Hydraulic conductivity of Geosynthetic Clay Liners after freeze-thaw, Journal of Geotechnical And Geoenvironmental Engineering 123/4 (1997) 305-313.
  • [11] J.F. Kraus, C.H. Benson, E. Eriksona, E.J. Chamberlain, Freeze-thaw cycling and hydraulic conductivity of bentonite barriers, Journal of Geotechnical and Geoenvironmental Engineering 123/5 (1997) 229-238.
  • [12] M. La Gatta, B.T Boardman, B.D. Cooley, D.E. Daniel, Geosynthetic Clay Liners subjected to differential settlement, Journal of Geotechnical and Geoenvironmental Engineering 123/5 (1997) 254-262.
  • [13] C.H. Benson, Final covers for waste containment, control and management of pollutants, Proceedings of the 17th Geotechnical Conference of Turino, Italy, 11 (1999) 1-35.
  • [14] G.P. Karunaratne, S.H. Chew, S.L. Lee, A.N. Sinha, Bentonite: kaolineite clay liner, Geosynthetic International 8/2 (2001) 113-133.
  • [15] K. Choma-Moryl, The possibilities of using clay to seal the basaltic debris soils, Waste degraded soil, Research, evaluation criteria, the reclamation, Technical and Scientific Conference, 2002 (in Polish).
  • [16] E. Helios Rybicka, B. Jędrzejczyk, Preliminary studies on mobilization of copper and lead from contaminated soil and readsorption on competing sorbents, Applied Clay Science 10 (1995) 259-268.
  • [17] W. Bluemel, A. Mueller-Kierchenbauer H, Ehrenberg, K. von Maubeuge, Experimentelle nachweise zur funktionsdauer von bentonitmatten in oberflaechenabdichtugen fuer deponien und altlasten, Proceedings of the 2nd SKZ Landfill Conference, Wuerzburg 2006 (in German).
  • [18] T. Egloffstein, Natural bentonites - influence of the ion exchange and partial desiccation on permeability and self-healing capacity of bentonites used in GCLs, Geotextilies and Geomembranes 19 (2001) 27-444.
  • [19] G. Heeten, Bentonitmatten als mineralisches Dichtungselement im Umweltschutz, Proceedings of the 2nd SKZ Landfill Conference, Wuerzburg, 2004 (in German).
  • [20] H. Zanzinger, Evaluation of clay geosynthetics barriers in landfill cover systems, Proceedings of the 4th Asian Regional Conference on Geosynthetic, Shanghai, 2004.
  • [21] H. Jo, C. Benson, J Lee, C. Shackelford T. Edil, Long term hydraulic conductivity of a non-prehydrated geosynthetic clay liner permeated with inorganic salt solutions, Journal of Geotechnical & Geoenvironmental Engineering 131/4 (2005) 405-417.
  • [22] H. Jo, C. Benson, T. Edil, Hydraulic conductivity and cation exchange in non-prehydrated and prehydrated bentonite permeated with weak inorganic salt solutions, Clays and Clay Minerals 52/6 (2004) 661-679.
  • [23] B. Bolewski, Advanced mineralogy, Publishing House Wydawnictwa Geologiczne, Warsaw (in Polish).
  • [24] N. Muhammand, Hydraulic, diffusion and retention characteristics of inorganic chemicals in bentonite, dissertation, University of South Florida (2004)
  • [25] G. Sposito, N.T. Skipper, R. Sutton, S. Park, A.K., Soper, J.A. Greathouse, Surface geochemistry of the clay minerals, Colloquium Paper 96 (1999) 3358-3364.
  • [26] N. Lahav, E.Bresler, Exchangeable cation - structural parameter relationships in montmorillonite”, Clays and Clay Minerals 21 (1973) 249-255.
  • [27] S. Shimoda, J.E. Brydon, I.R. studies of some interstratified minerals of mica and montmorillonite, Clays and Clay Minerals 19 (1971) 61-66.
  • [28] L. Lerrot, P.F. Low, Effect of swelling on the infrared absorption spectrum of montmorillonite, Clays and Clay minerals 24 (1976) 191-199.
  • [29] J.K. Mitchell, Fundaments of soil behavior, John Wiley and Sons, Inc., New York, 1993.
  • [30] M.B. McBride, Environmental chemistry of soils, Oxford University Press, 1994.
  • [31] C. Xu, X.Y. Liao, Z.B. Li, Influence of solution characteristics on swelling and hydraulic performance of Geosynthetic Clay Liners, Proceedings of the 4th Asian Regional Conference on Geosynthetics, Shanghai, 2008.
  • [32] H. Shan, Y. Lai, Effect of hydrating liquid on the hydraulic properties of Geosynthetic Clay Liners, Geotextiles and Geomemnranes 20 (2002) 19-38.
  • [33] R.J. Petrov, R.K. Rowe, Chemical compatibility by hydraulic conductivity testing and factors impacting its performance, Canadian Geotechnical Journal 34 (1997) 863885.
  • [34] C.D. Shackelford, C.H. Benson, T. Katsumi, T.B. Edil, L. Lin, Evaluating the hydraulic conductivity of GCLS permeated with non-standard liquids, Geotextiles Geomembranes 18 ( 2000) 133-161.
  • [35] D. Kolstad, C. Benson, T. Edil, Hydraulic conductivity and swell of non-prehydrated GCLs, Permeated with multispecies inorganic solutions, Journal of Geotechnical and Geoenvironmental Engineering 130 (2004) 1236-1249
  • [36] H. van Olpen, An introduction to clay colloid chemistry, New York and London: Interscience,1963.
  • [37] H.G. Montes, Swelling-shrinkage measurements of bentonite using coupled environmental scanning electron microscopy and digital image analysis, Journal of Colloid and Interface Science 284 (2005) 271-277.
  • [38] G. Sposito, The surface chemistry of natural particles, Oxford University Press U.S., 2004.
  • [39] L.A. Dobrzański, B. Tomiczek, M. Adamiak, Manufacturing of EN AW 6061 matrix composites reinforced by halloysite nanotubes, Journal of Achievements in Materials and Manufacturing Engineering (in print).
  • [40] R. Nowosielski, P. Sakiewicz P. Gramatyka, Optimization of the dielectric layers halloysite - bentonite, Proceedings of the International Conference of „Materials, Mechanical and Manufacturing Enginerering” MMME'2005, 1-3 (2005) 79-86 (in Polish).
  • [41] E. Joussein, S. Petit, J. Chrchman, B. Theng, D. Right, B. Delvaux, Halloysite clay minerals - a review, Clay Minerals 40 (2005) 383-426.
  • [42] B. Singh, Why does halloysite roll?-a new model, Clays and Clay Minerals 44 (1996) 191-196.
  • [43] K. Wada, Y, Kakuto, Selective adsorption of zinc on halloysite, Clays and Clay Minerals 28 (1980) 321-327.
  • [44] R. Nowosielski, P. Sakiewicz, The influence of halloysite on selected properties of sealing clay used in clay liners, Proceedings of the 3rd International Symposium on GCL, Wurzburg, 2010,168-178.
  • [45] R.L. Frost, Hydroxyl deformation in kaolins, Clays and Clay Minerals 46 (1998) 280-289.
  • [46] N. Chaikum, Inorganic intercalation complexes of halloysite an infrared study, Journal of The Science Society of Thailand 3 (1977) 189-200.
  • [47] S. Yariv S. Shoval, Interaction between akali-halides and halloysite: IR study of the interaction between alkali-halides and hydrated halloysite, Clays and Clay minerals 24 (1975) 253-262.
  • [48] B. Słomczyńska, B. Słomczyński, Physico-chemical and toxicological characteristics of leachates from MSW landfills, Polish Journal of Environmental Studies 13 (2004) 627-637 (in Polish).
  • [49] M. Pagano, A. Lopez, A. Volpe, A.C. di Pinto, Fenton’s pre-treatment of mature landfill leachate, Chemosphere 54 (2004) 1005-1010.
  • [50] C.B. Lake, R.K. Rowe, Migration of leachate constituents through a geosynthetic clay liner by diffusion, Swets and Zaitlinger, Lisse, 2002.
  • [51] K. Bukka, J.D. Miller, FTIR study of deuterated montmorillonites: Structural features relevant to pillared clay stability, Clays and Clay Minerals 40 (1992) 92-102.
  • [52] K. Oinuma, H. Hayashi, Infrared study of mixed-layer clay minerals, American Mineralogist 50 (1965) 1213-1227.
  • [53] M. Laraba, Chemical analyses with X-ray diffraction, X-ray Fluorescence and the influence of the impurities on the quality of kaolin of Tamazert El-Milia, Algeria, Journal of Applied Sciences 6 (2006) 1020-1027.
  • [54] K.M. Dontsova, L.D. Norton, C.T. Johnston, J. M. Bigham, Influence of exchangeable cations on water adsorption by soil clays, Soil Sci.Soc.Am.J 68 (2004) 1218-1227.
  • [55] S. Yariv, I. Lapides, A. Nasser, I Brodsky, K,H. Michaelian, Infrared study of the intercalation of potassium halides in kaolinite, Clays and Clay Minerals 48 (2000) 10-18.
  • [56] H.G. Montes, Swelling-shrinkage measurements of bentonite using coupled environmental scanning electron microscopy and digital image analysis, Journal of Colloid and Interface Science 284(2005)271-277.
  • [57] R. Pusch, The microstructure of MX-80 clay with respect to its bulk physical properties under different environmental conditions, SKB technical Report, TR-01-08, The Swedish Nuclear Fuel and Waste management, 2004.
  • [58] Y. Fukushima, X-ray diffraction study of aqueous-montmorillonite emulsions, Clays and Clay minerals 32 (1984) 320-326.
  • [59] Y.F. Arifin, Thermo-hydro-mechanical behavior of compacted bentonite-sand mixtures: an experimental study Ruhr-Universitat Bochum, 2008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c8704924-391a-475b-98be-9addfe517cb0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.