PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Piezoelectric bending of GPL-reinforced annular and circular sandwich nanoplates with FG porous core integrated with sensor and actuator using DQM

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Axisymmetric bending analysis of graphene platelet (GPL) sandwich annular and circular nanoplates with FG porous core and integrated with sensor and actuator resting on an elastic substrate under various boundary conditions is presented in this article. The present nanocomposite model is subjected to mechanical load and an external voltage. The upper and lower sandwich layers are made of aluminum matrix with GPL reinforcement. The effective material properties of the sandwich face layers are estimated in the framework of Halpin–Tsai scheme. In accordance with a refined four-variable theory considering the transverse shear and normal strains, the motion equations are obtained from principle of the virtual work. The size effects are considered by employing the nonlocal strain gradient theory. The differential quadrature method is utilized here to solve the governing equations. First, the obtained results are validated by implementing some comparisons with previous work. Then a comprehensive illustration is executed to show the impacts of boundary conditions, GPLs weight fraction, geometrical dimensions, elastic foundation parameters and applied voltage on the bending of the sandwich nanoplates with FG-porous core and piezoelectric layers.
Rocznik
Strony
621--638
Opis fizyczny
Bibliogr. 55 poz., rys., tab., wykr.
Twórcy
  • Department of Mathematics and Statistics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
  • Department of Mathematics, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
Bibliografia
  • [1] Wang Z, Chen SH, Han W. The static shape control for intelligent structures. Finite Elem Anal Des. 1997;26(4):303–14.
  • [2] He XQ, Ng TY, Sivashanker S, Liew KM. Active control of FGM plates with integrated piezoelectric sensors and actuators. Int J Solids Struct. 2001;38(9):1641–55.
  • [3] Ezzin H, Ben Amor M, Ben Ghozlen MH. Lamb waves propagation in layered piezoelectric/ piezomagnetic plates. Ultrasonics. 2017;76:63–9.
  • [4] Kulikov GM, Plotnikova SV. Three-dimensional exact analysis of piezoelectric laminated plates via a sampling surfaces method. Int J Solids Struct. 2013;50:1916–29.
  • [5] Kulikov GM, Plotnikova SV. A new approach to three-dimensional exact solutions for functionally graded piezoelectric laminated plates. Compos Struct. 2013;106:33–46.
  • [6] Alibeigloo A, Madoliat R. Static analysis of cross-ply laminated plates with integrated surface piezoelectric layers using differential quadrature. Compos Struct. 2009;88:342–53.
  • [7] Mallek H, Jrad H, Algahtani A, Wali M, Dammak F. Geometrically non-linear analysis of FG-CNTRC shell structures with surface-bonded piezoelectric layers. Comput Methods Appl Mech Eng. 2019;347:679–99.
  • [8] Fakhari V, Ohadi A, Yousefian P. Nonlinear free and forced vibration behavior of functionally graded plate with piezoelectric layers in thermal environment. Compos Struct. 2011;93:2310–21.
  • [9] Kolahchi R, Zarei MS, Hajmohammad MH, Nouri A. Wave propagation of embedded viscoelastic FG-CNT-reinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory. Int J Mech Sci. 2017;130:534–45.
  • [10] Zenkour AM, Sobhy M. Nonlocal piezo-hygrothermal analysis for vibration characteristics of a piezoelectric Kelvin–Voigt viscoelastic nanoplate embedded in a viscoelastic medium. Acta Mech. 2018;229(1):3–19.
  • [11] Abazid MA, Sobhy M. Thermo-electro-mechanical bending of FG piezoelectric microplates on Pasternak foundation based on a four-variable plate model and the modified couple stress theory. Microsyst Technol. 2018;24(2):1227–45.
  • [12] Sobhy M. Magneto-electro-thermal bending of FG-graphene reinforced polymer doubly-curved shallow shells with piezoelectro-magnetic faces. Compos Struct. 2018;203:844–60.
  • [13] Rostami R, Mohammadimehr M. Vibration control of sandwich plate–reinforced nanocomposite face sheet and porous core integrated with sensor and actuator layers using perturbation method. J Vib Control. 2020. https:// doi. org/ 10. 1177/ 10775 46320 948330.
  • [14] Ebrahimi F, Jafari A, Barati MR. Vibration analysis of magnetoelectro-elastic heterogeneous porous material plates resting on elastic foundations. Thin-Walled Struct. 2017;119:33–46.
  • [15] Huang XL, Dong L, Wei GZ, Zhong DY. Nonlinear free and forced vibrations of porous sigmoid functionally graded plates on nonlinear elastic foundations. Compos Struct. 2019;228:111326.
  • [16] Wu D, Liu A, Huang Y, Huang Y, Pi Y, Gao W. Dynamic analysis of functionally graded porous structures through finite element analysis. Eng Struct. 2018;165:287–301.
  • [17] Safarpour M, Rahimi A, Alibeigloo A, Bisheh H, Forooghi A. Parametric study of three-dimensional bending and frequency of FG-GPLRC porous circular and annular plates on different boundary conditions. Mech Based Des Struct Mach. 2020. https:// doi. org/ 10. 1080/ 15397 734. 2019. 17014 91.
  • [18] Sobhy M, Zenkour AM. Porosity and inhomogeneity effects on the buckling and vibration of double-FGM nanoplates via a quasi-3D refined theory. Compos Struct. 2019;220:289–303.
  • [19] Sobhy M. Size dependent hygro-thermal buckling of porous FGM sandwich microplates and microbeams using a novel four-variable shear deformation theory. Int J Appl Mech. 2020;12(02):2050017.
  • [20] Abazid MA, Zenkour AM, Sobhy M. Wave propagation in FG porous GPLs-reinforced nanoplates under in-plane mechanical load and Lorentz magnetic force via a new quasi 3D plate theory. Mech Based Design Struct Mach. 2020. https:// doi. org/ 10. 1080/ 15397 734. 2020. 17696 51.
  • [21] Sobhy M, Zenkour AM. Wave propagation in magneto-porosity FG bi-layer nanoplates based on a novel quasi-3D refined plate theory. Waves Random Complex Media. 2020. https:// doi. org/ 10. 1080/ 17455 030. 2019. 16348 53.
  • [22] Zeng S, Wang BL, Wang KF. Nonlinear vibration of piezoelectric sandwich nanoplates with functionally graded porous core with consideration of flexoelectric effect. Compos Struct. 2019;207:340–51.
  • [23] Setoodeh AR, Shojaee M, Malekzadeh P. Vibrational behavior of doubly curved smart sandwich shells with FG-CNTRC face sheets and FG porous core. Compos B Eng. 2019;165:798–822.
  • [24] Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–8.
  • [25] Rafiee MA, Rafiee J, Yu ZZ, Koratkar N. Buckling resistant graphene nanocomposites. Appl Phys Lett. 2009;95:223103.
  • [26] Gao X, Yue H, Guo E, Zhang H, Lin X, Yao L, Wang B. Preparation and tensile properties of homogeneously dispersed graphene reinforced aluminum matrix composites. Mater Des. 2016;94:54–60.
  • [27] Kirgiz MS. Advancements in mechanical and physical properties for marble powder–cement composites strengthened by nanostructured graphite particles. Mech Mater. 2016;92:223–34.
  • [28] Kirgiz MS. Advance treatment by nanographite for Portland pulverised fly ash cement (the class F) systems. Compos B Eng. 2015;82:59–71.
  • [29] Yang Z, Feng C, Yang J, Wang Y, Lv J, Liu A, Fu J. Geometrically nonlinear buckling of graphene platelets reinforced dielectric composite (GPLRDC) arches with rotational end restraints. Aerosp Sci Technol. 2020;107:106326.
  • [30] Wang Y, Feng C, Yang J, Zhou D, Liu W. Static response of functionally graded graphene platelet–reinforced composite plate with dielectric property. J Intell Mater Syst Struct. 2020;31(19):2211–28.
  • [31] Milani MA, Gonzalez D, Quijada R, Basso NRS, Cerrada ML, Azambuja DS, et al. Polypropylene/graphene nanosheet nanocomposites by in situ polymerization: synthesis, characterization and fundamental properties. Compos Sci Technol. 2013;84:1–7.
  • [32] Sobhy M. 3-D elasticity numerical solution for magneto-hygrothermal bending of FG graphene/metal circular and annular plates on an elastic medium. Eur J Mech A Solids. 2021;88:104265.
  • [33] Song M, Yang J, Kitipornchai S. Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos B Eng. 2018;134:106–13.
  • [34] Sobhy M. Buckling and vibration of FG graphene platelets/aluminum sandwich curved nanobeams considering the thickness stretching effect and exposed to a magnetic field. Results Phys. 2020;16:102865.
  • [35] Abazid MA. 2D magnetic field effect on the thermal buckling of metal foam nanoplates reinforced with FG-GPLs lying on Pasternak foundation in humid environment. Eur Phys J Plus. 2020;135:910.
  • [36] Li K, Wu D, Chen X, Cheng J, Liu Z, Gao W. Isogeometric analysis of functionally graded porous plates reinforced by graphene platelets. Compos Struct. 2018;204:114–30.
  • [37] Yi H, Sahmani S, Safaei B. On size-dependent large-amplitude free oscillations of FGPM nanoshells incorporating vibrational mode interactions. Arch Civ Mech Eng. 2020;20:1–23.
  • [38] Sobhy M. Differential quadrature method for magneto-hygro-thermal bending of functionally graded graphene/Al sandwich-curved beams with honeycomb core via a new higher-order theory. J Sandw Struct Mater. 2020. https:// doi. org/ 10. 1177/ 10996 36219 900668.
  • [39] Radwan AF, Sobhy M. Transient instability analysis of viscoelastic sandwich CNTs-reinforced microplates exposed to 2D magnetic field and hygrothermal conditions. Compos Struct. 2020;245:112349.
  • [40] Sobhy M, Abazid MA. Dynamic and instability analyses of FG graphene-reinforced sandwich deep curved nanobeams with viscoelastic core under magnetic field effect. Compos B Eng. 2019;174:106966.
  • [41] Alipour MM, Shariyat M. Nonlocal zigzag analytical solution for Laplacian hygrothermal stress analysis of annular sandwich macro/nanoplates with poor adhesions and 2D-FGM porous cores. Arch Civ Mech Eng. 2019;19(4):1211–34.
  • [42] Sobhy M, Zenkour AM. Vibration analysis of functionally graded graphene platelet-reinforced composite doubly-curved shallow shells on elastic foundations. Steel Compos Struct. 2019;33(2):195–208.
  • [43] Ebrahimi F, Mohammadi K, Barouti MM, Habibi M. Wave propagation analysis of a spinning porous graphene nanoplatelet-reinforced nanoshell. Waves Random Complex Media. 2019. https:// doi. org/ 10. 1080/ 17455 030. 2019. 16947 29.
  • [44] Zenkour AM, Sobhy M. Axial magnetic field effect on wave propagation in bi-layer FG graphene platelet-reinforced nanobeams. Eng Comput. 2021. https:// doi. org/ 10. 1007/ s00366- 020- 01224-3.
  • [45] Shimpi RP. Refined plate theory and its variants. AIAA J. 2002;40(1):137–46.
  • [46] Mitchell JA, Reddy JN. A refined hybrid plate theory for composite laminates with piezoelectric laminae. Int J Solids Struct. 1995;32(16):2345–67.
  • [47] Lim CW, Zhang G, Reddy JN. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids. 2015;78:298–313.
  • [48] Liu C, Ke LL, Wang YS, Yang J, Kitipornchai S. Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory. Compos Struct. 2013;106:167–74.
  • [49] Ghorbanpour Arani A, Kolahchi R, Zarei MS. Visco-surface-nonlocal piezoelasticity effects on nonlinear dynamic stability of graphene sheets integrated with ZnO sensors and actuators using refined zigzag theory. Compos Struct. 2015;132:506–26.
  • [50] Song M, Yang J, Kitipornchai S, Zhu W. Buckling and post-buckling of biaxially compressed functionally graded multilayer graphene nanoplatelet-reinforced polymer composite plates. Int J Mech Sci. 2017;131–132:345–55.
  • [51] Golmakani ME, Vahabi H. Nonlocal buckling analysis of functionally graded annular nanoplates in an elastic medium with various boundary conditions. Microsyst Technol. 2017;23(8):3613–28.
  • [52] Demir O, Balkan D, Peker RC, Metin M, Arikoglu A. Vibration analysis of curved composite sandwich beams with viscoelastic core by using differential quadrature method. J Sandw Struct Mater. 2020;22(3):743–70.
  • [53] Shu C. Differential quadrature and its application in engineering. Berlin: Springer; 2000.
  • [54] Reddy JN, Wang CM, Kitipornchai S. Axisymmetric bending of functionally graded circular and annular plates. Eur J Mech A Solids. 1999;18(2):185–99.
  • [55] Yun W, Rongqiao X, Haojiang D. Three-dimensional solution of axisymmetric bending of functionally graded circular plates. Compos Struct. 2010;92(7):1683–93.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c8703080-4059-4955-aac6-95c4ecd53fd6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.