PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nano b-I-Continuous Functions and Nano b-I-Open Functions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to define and study certain new classes of continuous, irresolute and open functions namely nano b-I-continuous, nano b-I-irresolute and nano b-I-open functions in nano ideal topological spaces. Some characterizations and properties regarding these concepts are discussed. All these concepts will be helpful for further generalizations of nano continuous mappings in nano ideal topological spaces.
Rocznik
Tom
Strony
47--59
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
  • Department of Mathematics, Al al-Bayt University, Mafraq, Jordan
Bibliografia
  • [1] D. Andrijevi´c, On b-open sets, Mat. Vesnik. 48 (1996) 59–64.
  • [2] A.A. Atoom, F. Bani-Ahmad, Between pairwise -α− perfect functions and pairwise -t–α− perfect functions, Journal of Applied Mathematics and Informatics 42 (1) (2024) 15–29.
  • [3] A.A. Atoom, H. Qoqazeh, R. Alrababah, E. Almuhur, N. Abu-Alkishik, Significant modification of pairwise omega continuous functions with associated concepts, Wseas Transcations on Mathematics (2023). DOI:10.37394/23206.2023.22.105.
  • [4] S.G. Crossley, S.K. Hildebrand, Semi-closure, Texas J. Sci. 22 (1971) 99–112.
  • [5] J. Dontchev, On pre-I-open sets and a decomposition of I-continuity, Banyan Math. J. 2 (1996).
  • [6] A. Caksu Guler, G. Aslim, b-I-open sets and decomposition of continuity via idealization, Proceedings of Institute of Mathematics and Mechanics. National Academy of Sciences of Azerbaijan 22 (2005) 27–32.
  • [7] E. Hatir, T. Noiri, On decomposition of continuity via idealization, Acta Math. Hungar. 96 (2002) 341–349.
  • [8] V. Inthumathi, R. Abinprakash, M. Parveen Banu, Some weaker forms of continuous and irresolute mappings in nano ideal topological spaces, Journal of New Results in Science (JNRS) 8 (1) (2019) 14–25.
  • [9] D.S. Jankovi´c, T.R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly 97 (4) (1990) 295–310.
  • [10] K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
  • [11] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963) 36–41.
  • [12] A.S. Mashhour, M.E. Abd El-Monssef, S.N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982) 47–53.
  • [13] J.M. Mustafa, Totally supra b-continuous and slightly supra b-continuous functions, Studia Universitaties Babes-Bolyai Mathematica 57 (1) (2012) 135–144.
  • [14] J.M. Mustafa, Supra b-compact and supra b-Lindelof spaces, Journal of Mathematics and Applications 36 (2013) 79–83.
  • [15] J.M. Mustafa, Supra soft b-compact and supra soft b-Lindelof spaces, Journal of Advances in Mathematics 16 (2019) 8376–8383.
  • [16] J.M. Mustafa, Weakly nano semi-I-open sets and weakly namo semi-I-continuous functions, Poincare Journal of Analysis and Applications 10 (1) (2023) 75–85.
  • [17] R.L. Newcomb, Topologies which are Compact Modulo Anideal, Ph.D. dissertation, University of California, Santa Barbara, Calif., USA, 1967.
  • [18] M. Parimala, S. Jafari, On some new notions in nano ideal topological spaces, International Balkan Journal of Mathematics 1 (3) (2018) 85–92.
  • [19] I. Rajasekaran, O. Nethaji, Simple forms of nano open sets in an ideal nano topological spaces, Journal of New Theory 24 (2018) 35–43.
  • [20] P. Sathishmohan, V. Rajendran, A. Devika, R. Vani, On nano semi continuity and nano pre continuity, International Journal of Applied Research 3 (2) (2017) 76–79.
  • [21] M.L. Thivagar, V.S. Devi, New sort of operator in nano ideal topology, Ultra Scientist 28 (1)A (2016) 51–64.
  • [22] M.L. Thivagar, S. Jafari, V.S. Devi, On new class of contra continuity in nano topology, Italian Journal of Pure and Appl. Math. 41 (2017) 1–12.
  • [23] M.L. Thivagar, C. Richard, On nano forms of weakly open sets, International Journal of Mathematics and Statistics Invention 1 (1) (2013) 31–37.
  • [24] M.L. Thivagar, C. Richard, On nano continuity, Mathematical Theory and Modelling 3 (7) (2013) 32–37.
  • [25] R. Vaidyanathaswamy, The localization theory in set topology, Proc. Indian Acad. Sci. 20 (1945) 51–61.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c86dc272-54b3-4963-b243-8afa3a7cb57f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.