PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The investigation of the strength reduction factor in predicting the shear strength

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Design codes propose to restrict the nominal probability of failure within specific target structural reliability levels using a load factor and a strength reduction factor. In the current ACI318 Code, the strength reduction factor varies from 0.65 to 0.90, and the value considered in predicting the shear strength equals to 0.75. In this study, the change in the strength reduction factor in predicting the shear strength according to ACI318 has been investigated for different coefficients of variation of concrete compressive strength by using the first-order second moment approach, and the strength reduction factor is proposed for the target values of failure probability.
Rocznik
Strony
371--381
Opis fizyczny
Bibliogr. 74 poz., rys., tab.
Twórcy
autor
  • Yildiz Technical University, Department of Civil Engineering,Esenler, Istanbul, Turkey
  • Yildiz Technical University, Department of Civil Engineering,Esenler, Istanbul, Turkey
autor
  • Yildiz Technical University, Department of Civil Engineering,Esenler, Istanbul, Turkey
Bibliografia
  • 1. Adebar P., Collins M.P., 1996, Shear strength of members without transverse reinforcement, Canadian Journal of Civil Engineering, 23, 1, 30-41
  • 2. American Concrete Institute Committee 318 (ACI318), 1995, Building Code Requirements for Structural Concrete (ACI318M-95) and Commentary, Farmington Hills, MI
  • 3. American Concrete Institute Committee 318 (ACI318), 2002, Building Code Requirements for Structural Concrete (ACI318M-02) and Commentary, Farmington Hills, MI
  • 4. American Concrete Institute Committee 318 (ACI318), 2011, Building Code Requirements for Structural Concrete (ACI318M-11) and Commentary, Farmington Hills, MI
  • 5. Anderson N.S., Ramirez J.A., 1989, Detailing of stirrup reinforcement, ACI Structural Journal, 86, 5, 507-515
  • 6. Ang A.H.S., Tang W.H., 1984, Probability Concepts in Engineering Planning and Design. V.II – Decision, Risk, and Reliability, Wiley, New York
  • 7. Angelakos D., Bentz E.C., Collins M.P., 2001, Effect of concrete strength and minimum stirrups on shear strength of large members, ACI Structural Journal, 98, 3, 290-300
  • 8. ASCE-ACI426, 1973, The shear strength of reinforced concrete members, Proceedings of the American Society of Civil Engineers, 99, ST6, 1091-1187
  • 9. AS5104-2005, General Principles on Reliability for Structures, Standards Australia, Sydney
  • 10. ASCE-SEI, 2010, Minimum design loads for buildings and other structures – ASCE/SEI7-10
  • 11. Bahl N.S., 1968, On the effect of beam depth to shear strength of simply supported reinforced concrete beams with and without shear reinforcement, PhD. Dissertation, Universit¨at Stuttgart, Germany, 125 p.
  • 12. Beck A.T., Oliveira W.L.A., DeNardim S., ElDebs A.L.H.C., 2009, Reliability-based evaluation of design code provisions for circular concrete-filled steel columns, Engineering Structures, 31, 2299-2308
  • 13. Bresler B., Scordelis A.C., 1961, Shear strength of reinforced concrete beams, Structures and Materials Research, 100, 3, Dept. of Civil Engineering, University of California, Berkeley, USA
  • 14. Bresler B., Scordelis A.C., 1966, Shear strength of reinforced concrete beams - Series III. Report No. 65 –10, Structures and Materials Research, University of California, Berkeley, USA
  • 15. Cladera A., Mari A.R., 2005, Experimental study on high-strength concrete beams failing in shear, Engineering Structures, 27, 10, 1519-1527
  • 16. Cladera A., Mari A.R., 2007, Shear strength in the new Euro code 2. A step forward?, Structural Concrete, 8,2, 57-66
  • 17. Collins M.P., Kuchma D., 1999, How safe are our large, lightly reinforced concrete beams, slabs and footings? ACI Structural Journal, 96, 4, 482-490
  • 18. Cucchiara C., La Mendola L., Papia M., 2004, Effectiveness of stirrups and steel fibres as shear reinforcement, Cement and Concrete Composites, 26, 7, 777-786
  • 19. Ellingwood B., 1978, Reliability basis of load and resistance factors for reinforced concrete design, Building Science Series, 110, National Bureau of Standards, Washington, D.C
  • 20. Elzanaty A.H., Nilson A.H., Slate F.O., 1986, Shear capacity of reinforced concrete beams using high strength concrete, ACI Structural Journal, 83, 2, 290-296
  • 21. Enright M.P., Frangopol D.M., 1998, Probabilistic analysis of resistance degradation of reinforced concrete bridge beams under corrosion, Engineering Structures, 20, 960-971
  • 22. Gonzalez F.B., 2002, Concrete with recycled aggregates from demolition: dosing, nechanical properties and shear behavior, PhD Thesis, Universidad de la Coruna
  • 23. Guralnick S.A., 1960, High-strength deformed steel bars for concrete reinforcement, ACI Journal, Proceedings, 57, 3, 241-282
  • 24. Haddadin M.J., Hong S.T., Mattock A.H., 1971, Stirrup effectiveness in reinforced concrete beams with axial force, Proceedings ASCE, 97, ST9, 2277-2297
  • 25. Hao H., Stewart M.G., Li Z.-X., Shi Y., 2010, RC column failure probabilities to blast loads, International Journal of Protective Structures, 1, 4
  • 26. Hasofer A.M., Lind N.C., 1974, An exact and invariant first order reliability format, Journal of the Engineering Mechanics Division, ASCE, 100, 111-121
  • 27. Hognestad E., 1951, A study of combined bending and axial load in reinforced concrete members, Engineering Experiment Station Bulletin, 399, University of Illinois, Urbana
  • 28. Hosseinnezhad A., Pourzeynali S., Razzaghi J., 2000, Aplication of first-order secondmoment level 2 reliability analysis of presstressed concrete bridges, 7th International Congress on Civil Engineering
  • 29. ISO2394, 1998, General Principles on Reliability for Structures, International Organization for Standardization, Geneva
  • 30. JCSS, 2000, Probabilistic model code Part III, Joint Committee on Structural Safety
  • 31. Johnson M.K., Ramirez J.A., 1989, Minimum shear reinforcement in beams with higher strength concrete, ACI Structural Journal, 86, 4, 376-382
  • 32. Karayiannis C.G., Chalioris C.E., 1999, Experimental investigation of the influence of stirrups on the shear failure mechanism of reinforced concrete beams (in Greek), Proceedings of 13th Hellenic Conference on Concrete, Rethymnon, Greece, 1, 133-141
  • 33. Kong P.Y.L., Rangan B.V., 1998, Shear strength of high-performance concrete beams, ACI Structural Journal, 95, 6, 677-688
  • 34. Krefeld W.J., Thurston C.W., 1966, Studies of the shear and diagonal tension strength of simply supported reinforced concrete beams, ACI Journal, 63, 4, 451-476
  • 35. Lee J.Y., Kim U.Y., 2008, Effect of longitudinal tensile reinforcement ratio and shear span-depth ratio on minimum shear reinforcement in beams, ACI Structural Journal, 105, 2, 134-144
  • 36. Leonhardt F., Walther R., 1962, Schubversuche an einfeldrigen Stahlbetonbalken mit und ohne Schubbewehrung (Shear tests of single span RC beams with and without stirrups), Deutscher Ausschuss f¨ur Stahlbeton, 151
  • 37. Low H.Y., Hao H., 2001, Reliability analysis of reinforced concrete slabs under explosive loading, International Journal of Structural Safety, 23, 2, 157-178
  • 38. MacGregor J.G., 1983, Load and resistance factors for concrete design, ACI Journal, 80, 279-287
  • 39. Madsen H.O., Krenk S., Lind N.C., 1986, Methods of Structural Safety, Prentice-Hall
  • 40. Mattock A.H., Wang Z., 1984, Shear strength of reinforced concrete members subject to high axial compressive stress, ACI Structural Journal, 11, 3, 287-298
  • 41. McGormley J.C., Creary D.B., Ramirez J.A., 1996, The performance of epoxy-coated shear reinforcement, ACI Structural Journal, 93, 5, 531-537
  • 42. Melchers RE., 1999, Structural Reliability Analysis and Prediction, John Wiley & Sons
  • 43. Mirza S.A., 1996, Reliability-based design of reinforced concrete columns, Structral Safety, 18, 2/3, 179-194
  • 44. Mirza S.A., Hatzinikolas M., MacGregor, J.G., 1979, Statistical descriptions of strength of concrete, Journal of the Structural Division, ASCE, 105, ST6, 1021-1037
  • 45. Mirza S.A., MacGregor J.G., 1979a, Variability of mechanical properties of reinforcing bars, Journal of the Structural Division, ASCE, 105, ST5, 921-937
  • 46. Mirza S.A., MacGregor J.G., 1979b, Variations in dimensions of reinforced concrete members, Journal of the Structural Division, ASCE, 105, ST4, 751-766
  • 47. Mphonde A. G., Frantz G.C., 1985, Shear tests of high- and low-strength concrete beams with stirrups, High Strength Concrete, SP-87, ACI, Detroit, 179-196
  • 48. NBR8800:2008, Design of Steel and Steel-Concrete Composite Structures: Procedures. ABNT – Brazilian Association of Technical Codes, Rio de Janeiro (in Portuguese)
  • 49. Neves R.A., Chateauneuf A.M., Venturini W.S., 2008, Component and system reliability analysis of nonlinear reinforced concrete grids with multiple failure modes, Structural Safety, 30, 3, 183-189
  • 50. Nowak A., Szerszen M., 2003, Calibration of design code for buildings (ACI318): Part 1 – statistical models for resistance, ACI Structural Journal, 100, 377-382
  • 51. Oliveira W.L., Beck A.T., ElDebs A.L.H.C., 2008, Safety evaluation of circular concrete-filled steel columns designed according to Brazilian building code NBR 8800:2008, IBRACON Structures and Materials Journal, 1, 212-236
  • 52. Ostlund L., 1991, An estimation of T-values, [In:] Reliability of Concrete Structures. CEB Bulletin d’Information, 202, Lausanne, Switzerland
  • 53. Ozcebe G., Ersoy U., Tankut T., 1999, Evaluation of minimum shear reinforcement requirements for higher strength concrete, ACI Structural Journal, 96, 3, 361-368
  • 54. Palakas, M.N., Darwin, D., 1980, Shear strength of lightly reinforced concrete beams, Structural Engineering Materails Report, 3, University of Kansas Center for Research, 198 p
  • 55. Placas A., Regan P.E., 1971, Shear failure of reinforced concrete beams, ACI Journal, 68, 10, 763-773
  • 56. Rackwitz R., Fiessler B., 1978, Structural reliability under combined random load sequences, Computers and Structures, 9, 5, 489-494
  • 57. Rajagopalan, K.S., Ferguson, P.M., 1968, Exploratory shear tests emphasizing percentage of longitudinal steel, ACI Journal, Proceedings, 65, 8, 634-638
  • 58. Ramsay R.J., Mirza S.A., MacGregor J.G., 1979, Monte Carlo study of short time deflections of reinforced concrete beams, ACI Journal, Proceedings, 76, 8, 897-918
  • 59. Ranganathan R., 1990, Reliability Analysis and Design of Structures, McGraw-Hill, New Delhi
  • 60. Ribeiro S.E.C., Diniz S.M.C., 2013, Reliability-based design recommendations for FRP- -reinforced concrete beams, Engineering Structures, 52, 273-283
  • 61. Roller J.J., Russell, H.G., 1990, Shear strength of HSC beams with web reinforcement, ACI Structural Journal, 87, 2, 191-198
  • 62. Sarzam K.F., Al-Musawi J.M.S., 1992, Shear design of high-and normal-strength concrete beams with web reinforcement, ACI Structural Journal, 89, 6, 658-664
  • 63. Shin S.W., Lee K.S., Moon J., Ghosh S.K., 1999, Shear strength of reinforced high-strength concrete beams with shear span-to-depth ratios between 1.5 and 2.5, ACI Structural Journal, 96, 4, 549-556
  • 64. Soares R.C., Mohammed A., Venturini W.S., Lemaire M., 2002, Reliability analysis of nonlinear reinforced concrete frames using the response surface method, Reliability Engineering and System Safety, 75, 1-16
  • 65. Swamy R.N., Andriopoulos A.D., 1974, Contribution of aggregate interlock and dowel forces to the shear resistance of reinforced beams with web reinforcement, Shear in Reinforced Concrete, SP-42, ACI, Mich., 129-166
  • 66. Tan K., Kong F., Teng S., Weng L., 1997, Effect of web reinforcement on high strength concrete deep beams, ACI Journal, 94, 5, 572-582
  • 67. TS500, 2000, Requirements for design and construction of reinforced concrete structures, Ankara, Turkish Standards Institute (in Turkish)
  • 68. Xie Y., Ahmad S. H., Yu T., Hino S., Chung W., 1994, Shear ductility of reinforced concrete beams of normal and high-strength concrete, ACI Structural Journal, 91, 2, 140-149
  • 69. Val D., Bljuger F., Yankelevsky D., 1997, Reliability evaluation in nonlinear analysis of reinforced concrete structures, Structural Safety, 19, 2, 203-217
  • 70. Val D.V., Chernin L., 2009, Serviceability reliability of reinforced concrete beams with corroded reinforcement, Journal of Structural Engineering, ASCE, 135, 8, 896-905
  • 71. Vrouwenvelder A.C.W.M., 2002, Developments towards full probabilistic design codes, Structural Safety, 24, 2/4, 417-432
  • 72. Yoon Y., Cook W.D., Mitchell D., 1996, Minimum shear reinforcement in normal-, medium-, and high-strength concrete beams, ACI Structural Journal, 93, 5, 576-584
  • 73. Zararis P.D., Papadakis G., 1999, Influence of the arrangement of reinforcement on the shear strength of RC beams (in Greek), Proceedings of 13th Hellenic Conference on Concrete, I, Greece, 110-119
  • 74. Zararis P.D., 2003, Shear strength and minimum shear reinforcement of reinforced concrete slender beams, ACI Structural Journal, 100, 2, 203-214
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c86b8a51-31e1-48a0-8501-223472907db2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.