PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The methods of evaluating storage volume for single-chamber reservoir in urban catchments

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Metoda wymiarowania jednokomorowego zbiornika retencyjnego w zlewniach miejskich
Języki publikacji
EN
Abstrakty
EN
The article presents a method of designing single-chamber rectangular detention reservoirs based on nomographs connecting the parameters and the shape of the inflow with the reservoir hydrograph (triangular, described by the power function and described by the gamma distribution) as well as the hydraulic characteristics of the accumulation chamber and the orifice. The preparation of nomographs involved using the SWMM (Storm Water Management Model) program with the application of numerical calculations’ results of a differential equation for the stormwater volume balance. The performed analyses confirm a high level of similarity between the results of calculating the reservoir volume obtained by using the above mentioned program and using the developed nomographs. The examples of calculations presented in the paper confirm the application aspects of the discussed method of designing the detention reservoir. Moreover, based on the conducted analyses it was concluded that the inflow hydrograph described by the gamma distribution has the greatest impact on the reservoir’s storage volume, whereas the hydrograph whose shape in the rise and recession phases is described by the power function has the smallest effect.
PL
W artykule przedstawiono metodę projektowania jednokomorowych prostopadłościennych zbiorników retencyjnych opierającą się o nomogramy wiążące parametry i kształt hydrogramu dopływu (trójkątny, potęgowy i opisany rozkładem gamma) do zbiornika oraz charakterystyki hydrauliczne komory akumulacyjnej i spustu. Do opracowania nomogramów tych wykorzystano wyniki obliczeń numerycznych równania różniczkowego bilansu objętości ścieków deszczowych w programie SWMM (Storm Water Management Model). Wykonane analizy potwierdzają wysoką zgodność wyników obliczeń pojemności zbiorników przeprowadzonych w powyższym programie oraz przy pomocy opracowanych nomogramów. Zamieszczone w pracy przykłady obliczeniowe potwierdzają aspekty aplikacyjne przedstawionej metody projektowania zbiornika retencyjnego. Ponadto, na podstawie przeprowadzonych analiz stwierdzono, że największy wpływ na pojemność akumulacyjną zbiornika ma hydrogram dopływu opisany rozkładem gamma a najmniejszy hydrogram, którego kształt w fazie przyboru i opadania jest wyrażony funkcją potęgową.
Rocznik
Strony
20--25
Opis fizyczny
Bibliogr. 43 poz., wykr.
Twórcy
autor
  • Kielce University of Technology, Faculty of Environmental, Geomatic and Energy Engineering
autor
  • Częstochowa University of Technology, Faculty of Environmental Engineering and Biotechnology
Bibliografia
  • [1]. Akan, O.A. (1990). Single outlet detention pond analysis and design, Journal of Irrigation and Drainage Engineering, 116, 4, pp. 527–536.
  • [2]. Akan, O.A. & Houghtalen, R. (2003). Urban hydrology, hydraulics, and stormwater quality. Engineering applications and computer modeling, John Wiley & Sons, New Jersey 2003.
  • [3]. Aron, G. & Kibler, D.F. (1990). Pond sizing for rational formula hydrographs, Water Resources Bulletin, 26, 2, pp. 255–258.
  • [4]. ATV A–118 (1990). Hydraulische Bemessung und Nachweis von Entwässerungssystemen, ATV – Regelwerk, Arbeitsblatt A 118, Hennef.
  • [5]. Bach, P.M., Rauch, W., Mikkelsen, P.S., McCarthy, D.T. & Deletic, A. (2014). A critical review of integrated urban water modelling – Urban drainage and beyond, Environmental Modelling & Software, 54, pp. 88–107.
  • [6]. Baker, W.R. (1979). Stormwater detention design for small drainage areas, Public Works, 108, 3, pp. 75–79.
  • [7]. Banasik, K., Krajewski, A., Sikorska, A. & Hejduk, L. (2014). Curve number estimation for a small urban catchment from recorded rainfall – runoff events, Archives of Environmental Protection, 40, 3, pp. 75–86.
  • [8]. Basha, H.A. (1995). Routing equations for detention reservoirs, Journal Hydraulic Engineering, 121, 12, pp. 885–888.
  • [9]. Burszta-Adamiak, E. (2012). Analysis of stormwater retention on green roofs, Archives of Environmental Protection, 38, 4, pp. 75–86, pp. 3–13.
  • [10]. Burton, K.R. (1980). Stormwater detention basin sizing, Journal Hydraulics Division, 106, 3, pp. 437–439.
  • [11]. Chow, V.T., Maidment, D.R. & Mays, L.W. (1988). Applied hydrology, McGraw-Hill, Singapore 1988.
  • [12]. Dayarante, S.T. & Perera, B.J.C. (2004). Calibration of urban stormwater drainage models using hydrograph modeling, Urban Water Journal, 1, 4, pp. 283–297.
  • [13]. Dayarante, S.T. & Perera, B.J.C. (2008). Regionalisation of impervious area parameters of urban drainage models, Urban Water Journal, 5, 3, pp. 231–246.
  • [14]. Djordjević, S., Prodanović, D., Maksimović, Č., Ivetić, M. & Savić, D. (2005). SIPSON – Simulation of Interaction between Pipe flow and Surface Overland flow in Networks, Water Science & Technology, 52, pp. 275–283.
  • [15]. Donahue, R.J. & McCuen, R.H. (1981). Comparison of detention basin planning and design models, Journal Water Resources Planning Management Division, 107, 2, pp. 385–400.
  • [16]. Dziopak, J. (1997). Multi-chamber storage reservoirs in the sewerage system, Monograph, Oficyna Wydawnicza Politechniki Częstochowskiej, Częstochowa 1997.
  • [17]. Dziopak, J. (1984). Mathematical model of storm storage reservoir, monograph, Wydawnictwo Politechniki Krakowskiej, Kraków 1984. (in Polish)
  • [18]. Dziopak, J. & Słyś, D. (2006). Physical and mathematical model of gravitation – pump reservoir in sewage system, Environment Protect Engineering, 32, 2, pp. 128–137.
  • [19]. Fenton, J.D. (1992). Reservoir routing, Hydrological Sciences Journal, 37, 3, pp. 233–246.
  • [20]. Fiorentini, M. & Orlandini, S. (2013). Robust numerical of the reservoir routing, Advances in Water Resources, 59, pp. 123–132.
  • [21]. Froehlich, D.C. (2009). Graphical sizing of small single – outlet detention basins in the Semiarid Southwest, Journal of Irrigation and Drainage Engineering, 135, 6, pp. 779–790.
  • [22]. Gomez, M., Vasquez, S. & Sanchez, H. (2001). Pre-sizing of detention basins. 4th International Conference NOVATECH – Innovative technologies in urban drainage (pp. 555–562), 25–27 July 2001, Lyon 2001.
  • [23]. Graber, D.S. (2009). Generalized numerical solution for detention basin design, Journal of Irrigation and Drainage Engineering, 135, 4, pp. 487–492.
  • [24]. Guo, J.C.Y. (1999). Detention basin sizing for small urban catchments, Journal of Water Resources Planning and Management, 125, 6, pp. 380–382.
  • [25]. Guo, J.C.Y. (2004). Hydrology – based approach to storm water detention basin design using new routing schemes, Journal of Hydrologic Engineering, 2004, 9, 4, pp. 333–336.
  • [26]. Gironàs, J., Niemann, J., Roesner, L.A., Rodriguez, F. & Andrieu, H. (2009). A morpho-climatic instantaneous unit hydrograph model for urban catchments based on the kinematics wave approximation, Journal of Hydrology, 377, 3–4, pp. 317–334.
  • [27]. Hager, W. & Sinninger, R.O. (1985). Flood storage of reservoir, Journal of Irrigation and Drainage Engineering, 111, 1.
  • [28]. Hong, Y.M. (2008). Graphical estimation of detention pond volume for rainfall of short duration, Journal of Hydro – environment Research, 2, 2, pp. 109–117.
  • [29]. Hong, Y.M., Yeh, N. & Chen, J.Y. (2006). The simplified methods of evaluating detention storage volume for small catchment, Ecological Engineering, 26, 4, pp. 355–364.
  • [30]. Kessler, A. & Diskin, H.M. (1991). The efficiency function of detention reservoirs in urban drainage systems, Water Resources Research, 27, 3, pp. 253–258.
  • [31]. Kisiel, A., Kisiel, J, Malmur, R. & Mrowiec, M. (2008). Retention tanks as key elements modern drainage systems, Technical Journal Environment, 105, 1, pp. 41–63. (in Polish)
  • [32]. Kisiel, A. (2007). Optimus – EP storage reservoir with a vacuum chamber filled by a system of suction and force pumps, Environment Protection Engineering, 33, 3, pp. 47–54.
  • [33]. Licznar, P. (2004). Rainfall erosivity prediction in Poland on the basis of monthly precipitation totals, Archives of Environmental Protection, 30, 4, pp. 75–86, pp. 29–39.
  • [34]. Licznar, P. (2013). Reservoir dimensioning based on the synthetic rainfall time series, Ochrona Środowiska, 35, 2, pp. 27–32.
  • [35]. Linsley, R.K., Kohler, M.A. & Paulhus, J.L. (1958). Hydrology for Engineers, Mc Graw – Hill, New York 1958.
  • [36]. Malmur, R. (2011). Analysis of hydraulic operations of transfer reservoir, Rocznik Ochrona Środowiska, 131, 1, pp. 2001–2014. (in Polish)
  • [37]. McEnroe, B.M. (1992). Preliminary sizing of detention reservoirs to reduce peak discharges, Journal of Hydraulic Engineering, 118, 11, pp. 1540–1549.
  • [38]. Mrowiec, M. (2009). The effective dimensioning and dynamic regulation sewage reservoirs, monograph, Wydawnictwo Naukowe Politechniki Częstochowskiej, Częstochowa 2009. (in Polish)
  • [39]. Seo, J., Choi & N.-J., Schmidt, A.R. (2013). Contribution of directly connected and isolated impervious areas tourban drainage network hydrographs, Hydrology and Earth System Sciences, 17, pp. 3473–3478.
  • [40]. Shuster, W.D., Bonta, J., Thurston, H., Warnemuende, E. & Smith, D.R. (2005). Impacts of impervious surface on watershed hydrology: A review, Urban Water Journal, 2, 4, pp. 263–275.
  • [41]. Szeląg, B. & Kiczko, A. (2014). The graphic method of sizing pipe reservoir for short, high – intensity rainfalls, Annals of Warsaw University of Life Sciences – SGGW Land Reclamation, 46, 3, pp. 221–232.
  • [42]. Taiwan Provincial Government Water Resources Department (1993). Study on the characteristics of triangular unit hydrograph, pp. 5–12. (in Chinese)
  • [43]. United States Department of Agriculture (1986). Urban hydrology for small watersheds. Technical Release 55 (TR-55) (Second Edition ed.). Natural Resources Conservation Service, Conservation Engineering Division.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c86b7424-1bf2-4689-a5d7-72bec895e195
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.