PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of speed limit and energy consumption in electric vehicles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents an analysis of the mileage energy consumption for an electric passenger vehicle in terms of introducing numerous speed limits. Regulations concerning the limiting of vehicle speed to30 km/h in cities or residential areas are particularly common. This restriction is intended to increase traffic safety, but at the same time introduces increased mileage fuel or energy consumption in electric drivetrain. Regardless of the energy carrier, any increase in energy causes negative effects for the environment. The analysis was focused on the mileage energy consumption of electric passenger cars for a constant speed under real traffic conditions. During the tests, the tested vehicles’ speed on a specially designated road section was changed gradually by 10 km/h, simultaneously recording the car’s traction parameters and mileage energy consumption. An analysis of the mileage energy consumption was then carried out for the assumed fleet of cars travelling one after another (in a so-called traffic jam), while maintaining a safe distance. This allowed for the calculation of the environment’s energy burden caused by a fleet of vehicles travelling on a given road section, indicating that a reduction in vehicle speed causes an increase in the vehicles’ energy consumption. Both total and mileage energy consumption of electric vehicles were analysed during the tests.
Czasopismo
Rocznik
Strony
83--89
Opis fizyczny
Bibliogr. 17 poz., wykr.
Twórcy
  • Faculty of Mechanical Engineering at Opole University of Technology, Poland
  • Faculty of Mechanical Engineering at Opole University of Technology, Poland
  • Formerly Department of Thermal Process Engineering and Plant Technology at the University Paderborn, Germany
  • Faculty of Mechanical Engineering, Opole University of Technology. Poland
  • Zakład Komunalny sp. z o.o., Opole, Poland
Bibliografia
  • [1] Andrych-Zalewska M, Chłopek Z, Merkisz J, Pielecha J. Determination of exhaust emission characteristics in the RDE test using the Monte Carlo method. Archives of Transport. 2023;66(2):45-60. https://doi.org/10.5604/01.3001.0016.3127
  • [2] Andrzejewski M, Nowak M, Woch A, Stefańska N. Analysis of pollutant emissions and fuel consumption for the use of a multi-storey carpark. Combustion Engines. 2021; 187(4):46-51. https://doi.org/10.19206/CE-141740
  • [3] Becker T, Sidhu I, Tenderich B. Electric vehicles in the United States: a new model with forecasts to 2030. Center for Entrepreneurship & Technology (CET), Technical Brief 2009.
  • [4] Bieniek A, Graba M, Hennek K, Mamala J. Analysis of fuel consumption of a spark ignition engine in the conditions of a variable load. MATEC Web Conf. 2017;118:00036. https://doi.org/10.1051/matecconf/201711800036
  • [5] Chłopek Z. Natural environment preservation. Motor Vehicles. WKŁ, Warsaw 2002.
  • [6] Chłopek Z. Evaluation of specific distance energy consumption by electric car. Car Transport/Transport Samochodowy. 2013;2:75-87.
  • [7] Fiori C, Arcidiacono V, Fontaras G, Makridis M, Mattas K, Marzano V et al. The effect of electrified mobility on the relationship between traffic conditions and energy consumption. Transport Res D-Tr E. 2019;67:275-290. https://doi.org/10.1016/j.trd.2018.11.018
  • [8] Gagan S. Unit energy consumption model of vehicles in real operating conditions. Engineering thesis, Opole University of Technology 2022. https://apd.po.edu.pl/diplomas/98969
  • [9] Graba M, Bieniek A, Prażnowski K, Hennek K, Mamala J, Burdzik R et al. Analysis of energy efficiency and dynamics during car acceleration. Eksploat Niezawodn. 2023;25(1): 17. https://doi.org/10.17531/ein.2023.1.17
  • [10] Kropiwnicki J. Comparison of energy efficiency of vehicles powered by different fuels. Combustion Engines. 2012; 150(3):34-43. https://doi.org/10.19206/CE-117029
  • [11] Kropiwnicki J, Furmanek M. Analysis of the regenerative braking process for the urban traffic conditions. Combustion Engines. 2019;178(3):203-207. https://doi.org/10.19206/CE-2019-335
  • [12] Lisowski M, Gołębiewski W, Prajwowski K, Danilecki K, Radwan M. Modeling the fuel consumption by a HEV vehicle - a case study. Combustion Engines. 2023;193(2):71-83. https://doi.org/10.19206/CE-157112
  • [13] Martins J, Brito FP, Pedrosa D, Monteiro V, Afonso JL. Real-life comparison between diesel and electric car energy consumption. Grid Electrified Vehicles: Performance, Design and Environmental Impacts, Nova Science Publishers, New York 2013.
  • [14] Mitrovic J. Optimum speed of road vehicles in terms of fuel consumption. Immissionsschutz 2020;1. https://doi.org/10.37307/j.1868-7776.2020.01.04
  • [15] Tutorials: the three-second-rule-on-the-road. https://mubi.pl/poradniki/zasada-trzech-sekund-na-drodze/
  • [16] Wang J, Besselink I, Nijmeijer H. Electric vehicle energy consumption modelling and prediction based on road information. World Electr Veh J. 2015;7(3):447-458. https://doi.org/10.3390/wevj7030447
  • [17] Zhang J, Wang Z, Liu P, Zhang Z. Energy consumption analysis and prediction of electric vehicles based on real-world driving data. Appl Energ. 2020;275:115408. https://doi.org/10.1016/j.apenergy.2020.115408
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c86a6f6e-02f5-4b68-a046-75f3ed219bf0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.