Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let X be a partially ordered set with the property that each family of order intervals of the form [a, b], [a,→) with the finite intersection property has a nonempty intersection. We show that every directed subset of X has a supremum. Then we apply the above result to prove that if X is a topological space with a partial order ⪯ for which the order intervals are compact, F is a nonempty commutative family of monotone maps from X into X and there exists c ∈ X such that c ⪯ Tc for every T ∈ F, then the set of common fixed points of F is nonempty and has a maximal element. The result, specialized to the case of Banach spaces, gives a general fixed point theorem for monotone mappings that drops many assumptions from several recent results in this area. An application to the theory of integral equations of Urysohn’s type is also given.
Wydawca
Rocznik
Tom
Strony
1--7
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
- Departamento de Análisis Matemático – IMUS, Universidad de Sevilla, Apdo. de Correos 1160, 41080 Sevilla, Spain
autor
- Department of Mathematics, Rzeszów University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Bibliografia
- [1] M. R. Alfuraidan and M. A. Khamsi, A fixed point theorem for monotone asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., to appear.
- [2] M. Bachar and M. A. Khamsi, Fixed points of monotone mappings and application to integral equations, Fixed Point Theory Appl. 2015, 2015:110, 7 pp.
- [3] B. A. Bin Dehaish and M. A. Khamsi, Browder and Göhde fixed point theorem for monotone nonexpansive mappings, Fixed Point Theory Appl. 2016, 2016:20, 9 pp.
- [4] S. Carl and S. Heikkilä, Fixed Point Theory in Ordered Sets and Applications. From Differential and Integral Equations to Game Theory, Springer, New York, 2011.
- [5] R. DeMarr, Common fixed points for isotone mappings, Colloq. Math. 13 (1964), 45-48.
- [6] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Univ. Press, Cambridge, 1990.
- [7] A. Granas and J. Dugundji, Fixed Point Theory, Springer, New York, 2003.
- [8] S. Heikkilä and V. Lakshmikantham, Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations, Dekker, New York, 1994.
- [9] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc. 136 (2008), 1359-1373.
- [10] J. J. Nieto and R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005), 223-239.
- [11] R. R. Phelps, Support cones in Banach spaces and their applications, Adv. Math. 13 (1974), 1-19.
- [12] A. C. M. Ran and M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004), 1435-1443.
- [13] M. Turinici, Fixed points for monotone iteratively local contractions, Demonstratio Math. 19 (1986), 171-180.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c867d400-8ffb-4d98-99e5-2e8595bc7aaf