Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Peatlands play a critical role in global habitats since are composed of heterogeneous materials and chemical reactions. Peatland fires significantly change the chemical characteristics of its soil, such as carbon (C), nitrogen (N), phosphorus (P) and potassium (K) content. This study aimed to measure peatland recovery only on those soil chemical characteristics based on two different times of sampling that are five years (Yr+5) and seven years (Yr+7) after the fires in 2015 (taken in 2020 and 2022). This study was conducted in the Balangan River - Batangalai River peat hydrological unit, South Kalimantan, Indonesia. Soil samples were collected at nine different locations, including are six locations in the areas that experienced fires in 2015 and three locations in the areas that did not experience fires. Those soil samples were taken with excavated pits at each sample location at each depth of 10, 20, 30, 40 and 50 cm. This study found that the carbon content in the post-fire area increased by 22.00% and in the natural area by 9.90%. The nitrogen content in the post-fire area increased by 1.94% and in the natural area by 1.17%. The potassium content in the post-fire areas increased by 16.33% and in the natural areas by 4.44%. The phosphorus content in the post-fire area increased by 3.18% and in the natural area by 5.11%. C/N ratio increased by 19.68% and C/P ratio increased by 18.24%. Overall, the increase in carbon, nitrogen, potassium, phosphorus, C/N ratio and C/P ratio in post-fire and natural peatlands indicates an improved condition. This study can provide supporting information for the regulator, management or expertise of the land and forest rehabilitation to speed up the recovery process.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
104--115
Opis fizyczny
Bibliogr. 70 poz., rys., tab.
Twórcy
autor
- Department of Physics, Faculty of Mathematics and Natural Sciences, University of Lambung Mangkurat, Jl. A. Yani Km. 36 Banjarbaru, Indonesia
autor
- Department of Soil Science, Faculty of Agriculture, University of Lambung Mangkurat, Jl. A. Yani Km. 36 Banjarbaru, Indonesia
autor
- Department of Chemical Engineering, Faculty of Engineering, University of Lambung Mangkurat, Jl. A. Yani Km. 36 Banjarbaru, Indonesia
autor
- Department of Forestry, Faculty of Forestry, University of Lambung Mangkurat, Jl. A. Yani Km. 36 Kota Banjarbaru, Indonesia
Bibliografia
- 1. Agus, F., Hairiah, K., Mulyani, A. 2011. Pengukuran cadangan karbon tanah gambut. Bogor, Indonesia: World Agroforestry Centre dan Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian.
- 2. Anda, M., Ritung, S., Suryani, E., Sukarman, Hikmat, M., Yatno, E., Mulyani, A., Subandiono, R.E., Suratman, Husnain, 2021. Revisiting tropical peatlands in Indonesia: Semi-detailed mapping, extent and depth distribution assessment. Geoderma, 402(June): 115235. DOI: 10.1016/j.geoderma.2021.115235
- 3. Anshari, G.Z., Afifudin, M., Nuriman, M., Gusmayanti, E., Arianie, L., Susana, R., Nusantara, R.W., Sugardjito, J., Rafiastanto, A., 2010. Drainage and land use impacts on changes in selected peat properties and peat degradation in West Kalimantan Province, Indonesia. Biogeosciences, 7(11): 3403–3419. DOI: 10.5194/bg-7-3403-2010
- 4. Arisanty, D., Jędrasiak, K., Rajiani, I., Grabara, J. 2020. The destructive impact of burned peatlands to physical and chemical properties of soil. Acta Montanistica Slovaca, 25(2): 213–223. DOI: 10.46544/AMS.v25i2.8
- 5. Atkinson, C.L. Alibašić, H. 2023. Prospects for Governance and Climate Change Resilience in Peatland Management in Indonesia. Sustainability (Switzerland), 3: 1–16. DOI: 10.3390/su15031839
- 6. van Beest, C., Petrone, R., Nwaishi, F., Waddington, J.M., Macrae, M. 2019. Increased peatland nutrient availability following the Fort McMurray horse River wildfire. Diversity, 11(9): 1–17. DOI: 10.3390/d11090142
- 7. Blier-Langdeau, A., Guêné-Nanchen, M., Hugron, S., Rochefort, L. 2022. The resistance and short-term resilience of a restored extracted peatland ecosystems post-fire: an opportunistic study after a wildfire. Restoration Ecology, 30(4): 1–10. DOI: 10.1111/rec.13545
- 8. Carmenta, R., Zabala, A., Daeli, W., Phelps, J. 2017. Perceptions across scales of governance and the Indonesian peatland fires. Global Environmental Change, 46(November 2016): 50–59. DOI: 10.1016/j.gloenvcha.2017.08.001
- 9. Deshmukh, C.S., Julius, D., Desai, A.R., Asyhari, A., Page, S.E., Nardi, N., Susanto, A.P., Nurholis, N., Hendrizal, M., Kurnianto, S., Suardiwerianto, Y., Salam, Y.W., Agus, F., Astiani, D., Sabiham, S., Gauci, V., Evans, C.D. 2021. Conservation slows down emission increase from a tropical peatland in Indonesia. Nature Geoscience, 14(7): 484–490. DOI: 10.1038/s41561-021-00785-2
- 10. Dhandapani, S., Eversa, S. 2018. Oil palm ‘slash-and-burn’ practice increases post-fire greenhouse gas emissions and nutrient concentrations in burnt regions of an agricultural tropical peatland. In: Science of the Total Environment, 19: 160648. https://doi.org/10.1016/j.scitotenv.2020.140648
- 11. Dikici, H., Yilmaz, C.H. 2006. Peat Fire Effects on Some Properties of an Artificially Drained Peatland. Journal of Environmental Quality, 35(3): 866–870. DOI: 10.2134/jeq2005.0170
- 12. Dohong, A., Abdul Aziz, A., and Dargusch, P. 2018. A Review of Techniques for Effective Tropical Peatland Restoration. Wetlands, 38(2): 275–292. DOI: 10.1007/s13157-018-1017-6
- 13. Farmer, J., Matthews, R., Smith, P., Langan, C., Hergoualc’h, K., Verchot, L., Smith, J.U. 2014. Comparison of methods for quantifying soil carbon in tropical peats. Geoderma, 214–215: 177–183. DOI: 10.1016/j.geoderma.2013.09.013
- 14. Febria, D., Fithriyana, R., Isnaeni, L.M.A., Librianty, N., Irfan, A. 2021. Interaction between environment, economy, society and health in the concept of environmental health: Studies on peatland communities. Open Access Macedonian Journal of Medical Sciences, 9, 919–923. https://orcid.org/0000-0001-9293-4975
- 15. Günther, A., Barthelmes, A., Huth, V., Joosten, H., Jurasinski, G., Koebsch, F., Couwenberg, J. 2020. Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nature Communications, 11(1): 1–5.DOI: 10.1101/748830
- 16. Harrison, M.E., Ottay, J.B., D’Arcy, L.J., Cheyne, S.M., Anggodo, Belcher, C., Cole, L., Dohong, A., Ermiasi, Y., Feldpausch, T., Gallego-Sala, A., Gunawan, A., Höing, A., Husson, S.J., Kulu, I.P., Soebagio, S.M., Mang, S., Mercado, L., Morrogh-Bernard, H.C., Page, S.E., Priyanto, R., Ripoll Capilla, B., Rowland, L., Santos, E.M., Schreer, V., Sudyana, I.N., Taman, S.B.B., Thornton, S.A., Upton, C., Wich, S.A., van Veen, F.J.F. 2020. Tropical forest and peatland conservation in Indonesia: Challenges and directions. People and Nature, 2(1): 4–28. DOI: 10.1002/pan3.10060
- 17. Helbig, M., Waddington, J.M., Alekseychik, P., Amiro, B., Aurela, M., Barr, A.G., Black, T.A., Carey, S.K., Chen, J., Chi, J., Desai, A.R., Dunn, A., Euskirchen, E.S., Flanagan, L.B., Friborg, T., Garneau, M., Grelle, A., Harder, S., Heliasz, M., Humphreys, E.R., Ikawa, H., Isabelle, P.E., Iwata, H., Jassal, R., Korkiakoski, M., Kurbatova, J., Kutzbach, L., Lapshina, E., Lindroth, A., Löfvenius, M.O., Lohila, A., Mammarella, I., Marsh, P., Moore, P.A., Maximov, T., Nadeau, D.F., Nicholls, E.M., Nilsson, M.B., Ohta, T., Peichl, M., Petrone, R.M., Prokushkin, A., Quinton, W.L., Roulet, N., Runkle, B.R.K., Sonnentag, O., Strachan, I.B., Taillardat, P., Tuittila, E.S., Tuovinen, J.P., Turner, J., Ueyama, M., Varlagin, A., Vesala, T., Wilmking, M., Zyrianov, V., Schulze, C. 2020. The biophysical climate mitigation potential of boreal peatlands during the growing season. Environmental Research Letters, 15(10). DOI: 10.1088/1748-9326/abab34
- 18. Hikmatullah, H., Sukarman, S. 2015. Physical and Chemical Properties of Cultivated Peat Soils in Four Trial Sites of ICCTF in Kalimantan and Sumatra, Indonesia. Journal of Tropical Soils, 19(3): 131-141. DOI: 10.5400/jts.15.2.95
- 19. Humpenöder, F., Karstens, K., Lotze-Campen, H., Leifeld, J., Menichetti, L., Barthelmes, A., Popp, A., 2020. Peatland protection and restoration are key for climate change mitigation. Environmental Research Letters, 15(10): 104093. DOI: 10.1088/1748-9326/abae2a
- 20. Ingram, R.C., Moore, P.A., Wilkinson, S., Petrone, R.M., Waddington, J.M. 2019. Postfire Soil Carbon Accumulation Does Not Recover Boreal Peatland Combustion Loss in Some Hydrogeological Settings. Journal of Geophysical Research: Biogeosciences, 124(4): 775–788. DOI: 10.1029/2018JG004716
- 21. Ismawi, S.M., Gandaseca1, S., Ahmed, O.H. 2012. Effects of deforestation on soil major macro-nutrient and other selected chemical properties of secondary tropical peat swamp forest. International Journal of the Physical Sciences, 7(14): 2225–2228. DOI: 10.5897/IJPS11.596
- 22. IUCN. 2017. Peatlands and Climate Change. International Union for Conservation of Nature.
- 23. Kiely, L., Spracklen, D. V., Arnold, S.R., Papargyropoulou, E., Conibear, L., Wiedinmyer, C., Knote, C., Adrianto, H.A., 2021. Assessing costs of Indonesian fires and the benefits of restoring peatland. Nature Communications, 12(1): 1–11. DOI: 10.1038/ s41467-021-27353-x
- 24. Krashevska, V., Tsyganov, A.N., Esaulov, A.S., Mazei, Y.A., Hapsari, K.A., Saad, A., Sabiham, S., Behling, H., Biagioni, S. 2020. Testate Amoeba Species- and Trait-Based Transfer Functions for Reconstruction of Hydrological Regime in Tropical Peatland of Central Sumatra, Indonesia. Frontiers in Ecology and Evolution, 8(July): 1–15. DOI: 10.3389/fevo.2020.00225
- 25. Krüger, J.P., Leifeld, J., Glatzel, S., Szidat, S., Alewell, C. 2015. Biogeochemical indicators of peatland degradation - A case study of a temperate bog in northern Germany. Biogeosciences, 12(10): 2861–2871. DOI: 10.5194/bg-12-2861-2015
- 26. Leifeld, J., Klein, K., Wüst-Galley, C. 2020. Soil organic matter stoichiometry as indicator for peatland degradation. Scientific Reports, 10(1): 1–9. DOI: 10.1038/s41598-020-64275-y
- 27. Liimatainen, M., Voigt, C., Martikainen, P.J., Hytönen, J., Regina, K., Óskarsson, H., Maljanen, M. 2018. Factors controlling nitrous oxide emissions from managed northern peat soils with low carbon to nitrogen ratio. Soil Biology and Biochemistry, 122(November 2017): 186–195. DOI: 10.1016/j.soilbio.2018.04.006
- 28. Liu, H., Rezanezhad, F., Lennartz, B. 2022. Impact of land management on available water capacity and water storage of peatlands. Geoderma, 406(January): 1–7. DOI: 0.1016/j.geoderma.2021.115521
- 29. Liu, H., Zak, D., Rezanezhad, F., Lennartz, B. 2019. Soil degradation determines release of nitrous oxide and dissolved organic carbon from peatlands. Environmental Research Letters, 14(9): 094009. DOI: 10.1088/1748-9326/ab3947
- 30. Lupascu, M., Akhtar, H., Smith, T.E.L., Sukri, R.S. 2020. Post-fire carbon dynamics in the tropical peat swamp forests of Brunei reveal long-term elevated CH4 flux. Global Change Biology, 26(9): 5125– 5145. DOI: 10.1111/gcb.15195
- 31. MacDonald, J.A., Dise, N.B., Matzner, E., Armbruster, M., Gundersen, P., Forsius, M. 2002. Nitrogen input together with ecosystem nitrogen enrichment predict nitrate leaching from European forests. Global Change Biology, 8(10): 1028–1033. DOI: 10.1046/j.1365-2486.2002.00532.x
- 32. Marcotte, A.L., Limpens, J., Stoof, C.R., Stoorvogel, J.J. 2022. Can ash from smoldering fires increase peatland soil pH? International Journal of Wildland Fire, 31(6): 607–620. DOI: 10.1071/WF21150
- 33. Mauquoy, D., Payne, R.J., Babeshko, K. V., Bartlett, R., Boomer, I., Bowey, H., Evans, C.D., Ring-Hrubesh, F., Muirhead, D., O’Callaghan, M., Piotrowska, N., Rush, G., Sloan, T., Smeaton, C., Tsyganov, A.N., Mazei, Y.A. 2020. Falkland Island peatland development processes and the pervasive presence of fire. Quaternary Science Reviews, 240: 106391. DOI: 10.1016/j.quascirev.2020.106391
- 34. Merten, J., Nielsen, J.Ø., Rosyani, Faust, H. 2021. Climate change mitigation on tropical peatlands: A triple burden for smallholder farmers in Indonesia. Global Environmental Change, 71(September): 102338. DOI: 10.1016/j.gloenvcha.2021.102388
- 35. Miettinen, J., Shi, C., Liew, S.C. 2016. Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Global Ecology and Conservation, 6: 67–78. DOI: 10.1016/j.gecco.2016.02.004
- 36. Mishra, S., Page, S.E., Cobb, A.R., Lee, J.S.H., Jovani-Sancho, A.J., Sjögersten, S., Jaya, A., Aswandi, Wardle, D.A. 2021. Degradation of Southeast Asian tropical peatlands and integrated strategies for their better management and restoration. Journal of Applied Ecology, 58(7): 1370–1387. DOI: 10.1111/1365-2664.13905
- 37. Nelson, K., Thompson, D., Hopkinson, C., Petrone, R., Chasmer, L. 2021. Peatland-fire interactions: A review of wildland fire feedbacks and interactions in Canadian boreal peatlands. Science of the Total Environment, 769: 145212. DOI: 10.1016/j. scitotenv.2021.145212
- 38. Pérez-Castillo, A.G., Monge-Muñoz, M., Durán-Quesada, A.M., Giraldo-Sanclemente, W., Méndez-Esquivel, A.C., Briceño, N., Cadillo-Quiroz, H. 2023. Assessment of vegetation and peat soil characteristics of a fire-impacted tropical peatland in Costa Rica. Research Square, 1–28. DOI: 10.21203/ rs.3.rs-2934870/v1
- 39. Porowski, A., Porowska, D., Halas, S. 2019. Identification of sulfate sources and biogeochemical processes in an aquifer affected by Peatland: Insights from monitoring the isotopic composition of groundwater sulfate in Kampinos National Park, Poland. Water (Switzerland), 11(7): 1–25. DOI: 10.3390/w11071388
- 40. Qirom, M.A., Yuwati, T.W., Rachmanadi, D., Halwany, W. 2021. The variation of carbon content and bulk density on different time period post fire and peat depth. In: IOP Conference Series: Earth and Environmental Science, 1–7. DOI: 10.1088/1755-1315/886/1/012096
- 41. Ramadhan, S., Tiwow, V.M.A., Said, I. 2017. Analisis Kadar Unsur Nitrogen (N) Dan Posforus (P) Dalam Lamun (Enhalus acoroides) Di Wilayah Perairan Pesisir Kabonga Besar Kecamatan Banawa Kabupaten Donggala. Jurnal Akademika Kimia, 5(1), 37. DOI: 10.22487/j24775185.2016.v5.i1.7998
- 42. Ramdzan, K.N.M., Moss, P.T., Heijnis, H., Harrison, M.E., Yulianti, N. 2022. Application of Palaeoecological and Geochemical Proxies in the Context of Tropical Peatland Degradation and Restoration: A Review for Southeast Asia. Wetlands, 42(7): 1–18. DOI: 10.1007/s13157-022-01618-7
- 43.Ritson, J.P., Alderson, D.M., Robinson, C.H., Burkitt, A.E., Heinemeyer, A., Stimson, A.G., Gallego-Sala, A., Harris, A., Quillet, A., Malik, A.A., Cole, B., Robroek, B.J.M., Heppell, C.M., Rivett, D.W., Chandler, D.M., Elliott, D.R., Shuttleworth, E.L., Lilleskov, E., Cox, F., Clay, G.D., Diack, I., Rowson, J., Pratscher, J., Lloyd, J.R., Walker, J.S., Belyea, L.R., Dumont, M.G., Longden, M., Bell, N.G.A., Artz, R.R.E., Bardgett, R.D., Griffiths, R.I., Andersen, R., Chadburn, S.E., Hutchinson, S.M., Page, S.E., Thom, T., Burn, W., Evans, M.G. 2021. Towards a microbial process-based understanding of the resilience of peatland ecosystem service provisioning – A research agenda. Science of the Total Environment, 759: 143467. DOI: 10.1016/j.scitotenv.2020.143467
- 44. Saharjo, B.H., Novita, N. 2022. The High Potensial of Peatland Fires Management For Greenhouse Gas Emissions Reduction in Indonesia. Jurnal Silvikultur Tropika, 13(1): 53–65. DOI: 10.29244/j-siltrop.13.01.53-65
- 45. Sakuntaladewi, N., Rachmanadi, D., Mendham, D., Yuwati, T.W., Winarno, B., Premono, B.T., Lestari, S., Ardhana, A., Ramawati, Budiningsih, K., Hidayat, D.C., Iqbal, M. 2022. Can We Simultaneously Restore Peatlands and Improve Livelihoods? Exploring Community Home Yard Innovations in Utilizing Degraded Peatland. Land, 11(2): 1–22. DOI: 10.3390/land11020150
- 46. Salim, A.G., Narendra, B.H., Dharmawan, I.W.S., Pratiwi, 2021. Chemical and hydro-physical peat characteristics under agricultural peat land management in central kalimantan, indonesia. Polish Journal of Environmental Studies, 30(5): 4647–4655. DOI: 10.15244/pjoes/134541
- 47. Santika, T., Muhidin, S., Budiharta, S., Haryanto, B., Agus, F., Wilson, K.A., Struebig, M.J., Po, J.Y.T. 2023. Deterioration of respiratory health following changes to land cover and climate in Indonesia. One Earth, 6(3): 290–302. DOI: 10.1016/j.oneear.2023.02.012
- 48. Sazawa, K., Wakimoto, T., Fukushima, M., Yustiawati, Y., Syawal, M.S., Hata, N., Taguchi, S., Tanaka, S., Tanaka, D., Kuramitz, H. 2018. Impact of Peat Fire on the Soil and Export of Dissolved Organic Carbon in Tropical Peat Soil, Central Kalimantan, Indonesia. ACS Earth and Space Chemistry, 2(7): 692–701. DOI: 10.1021/ acsearthspacechem.8b00018
- 49. Shepherd, H.E.R., Catford, J.A., Steele, M.N., Dumont, M.G., Mills, R.T.E., Hughes, P.D.M., Robroek, B.J.M. 2021. Propagule availability drives post-wildfire recovery of peatland plant communities. Applied Vegetation Science, 24(3): 1–11.
- 50. Shepherd, H.E.R., Martin, I., Marin, A., Cruijsen, P.M.J.M., Temmink, R.J.M., Robroek, B.J.M., 2023. Post-fire peatland recovery by peat moss inoculation depends on water table depth. Journal of Applied Ecology, 60(4): 673–684. DOI: 10.1111/1365-2664.14360
- 51. Šimanauskienė, R., Linkevičienė, R., Bartold, M., Dąbrowska-Zielińska, K., Slavinskienė, G., Veteikis, D., Taminskas, J., 2019. Peatland degradation: The relationship between raised bog hydrology and normalized difference vegetation index. Ecohydrology, 12(8): 1–13. DOI: 10.1002/eco.2159
- 52. Siregar, S., Idiawati, N., Lestari, P., Berekute, A.K., Pan, W.C., Yu, K.P. 2022. Chemical Composition, Source Appointment and Health Risk of PM2.5 and PM2.5-10 during Forest and Peatland Fires in Riau, Indonesia. Aerosol and Air Quality Research, 22(9): 220015. DOI: 10.4209/aaqr.220015
- 53. Snyder, J.M., Rejmánková, E. 2015. Macrophyte root and rhizome decay: the impact of nutrient enrichment and the use of live versus dead tissue in decomposition studies. Biogeochemistry, 124(1–3): 45–59. DOI: 10.1007/s10533-015-0080-9
- 54. Sulaeman, D., Sari, E.N.N., Westhoff, T.P. 2021. Effects of peat fires on soil chemical and physical properties: A case study in South Sumatra. IOP Conference Series: Earth and Environmental Science, 648(1): 1–11. DOI: 10.1088/1755-1315/648/1/012146
- 55. Sulaeman, Suparto, Eviati, 2005. Analisis Kimia Tanah, Tanaman, Air dan Pupuk. Balai Penelitian Tanah,. Bogor: Badan Penelitian dan Pengembangan Pertanian, Departemen Pertanian.
- 56. Syaufina, L. Hamzah, A.A. 2021. Changes of tree species diversity in peatland impacted by moderate fire severity at teluk meranti, Pelalawan, Riau province, Indonesia. Biodiversitas, 22(5): 2899–2908. DOI: 10.13057/biodiv/d220555
- 57. Syaufina, L., Saharjo, B.H., Nurhayati, A.D., Putra, E.I. 2022. Soil Responses on Peatland Fire: Case Studies in Jambi and Central Kalimantan. Journal of Tropical Silviculture, 13(1): 66–71. DOI: 10.29244/j-siltrop.13.01.66-71
- 58. Tarigan, S., Zamani, N.P., Buchori, D., Kinseng, R., Suharnoto, Y., Siregar, I.Z. 2021. Peatlands Are More Beneficial if Conserved and Restored than Drained for Monoculture Crops. Frontiers in Environmental Science, 9(November): 1–12. DOI: 10.3389/fenvs.2021.749279
- 59. Uda, S.K., Hein, L., Atmoko, D. 2019. Assessing the health impacts of peatland fires: a case study for Central Kalimantan, Indonesia. Environmental Science and Pollution Research, 26(30): 31315–31327. DOI: 10.1007/s11356-019-06264-x
- 60. Uning, R., Latif, M.T., Othman, M., Juneng, L., Hanif, N.M., Nadzir, M.S.M., Maulud, K.N.A., Jaafar, W.S.W.M., Said, N.F.S., Ahamad, F., Takriff, M.S. 2020. A review of southeast Asian oil palm and its CO2 fluxes. Sustainability (Switzerland), 12(12): 1–15. DOI: 10.3390/su12125077
- 61. Usman, U. 2012. Teknik Penetapan Nitrogen Total pada Contoh Tanah Secara Destilasi Titrimetri dan Kolorimetri Menggunakan Autoanalyzer. Buletin Teknik Pertanian, 17(I): 41–44.
- 62. Volkova, L., Adinugroho, W.C., Krisnawati, H., Imanuddin, R., Weston, C.J. 2021. Loss and recovery of carbon in repeatedly burned degraded peatlands of Kalimantan, Indonesia. Fire, 4(4): 1–9. DOI: 10.3390/fire4040064
- 63. Wahyono, S.C., Kurnain, A., Nata, I.F., Asyari, M. 2023. Post Peat Fire Soil Natural Recovery Based on Physical Properties in South Kalimantan, Indonesia. International Journal of Plant & Soil Science, 35(18): 1416–1424. DOI: 10.9734/ijpss/2023/ v35i183409
- 64. Wang, G., Yu, X., Bao, K., Xing, W., Gao, C., Lin, Q., Lu, X. 2015. Effect of fire on phosphorus forms in Sphagnum moss and peat soils of ombrotrophic bogs. Chemosphere, 119: 1329–1334. DOI: 10.1016/j.chemosphere.2014.01.084
- 65. Wasis, B., Saharjo, B.H., Putra, E.I. 2019. Impacts of peat fire on soil flora and fauna, soil properties and environmental damage in riau province, Indonesia. Biodiversitas, 20(6): 1770–1775. DOI: 10.13057/biodiv/d200639
- 66. Wiggins, E.B., Czimczik, C.I., Santos, G.M., Chen, Y., Xu, X., Holden, S.R., Randerson, J.T., Harvey, C.F., Kai, F.M., Yu, L.E. 2018. Smoke radiocarbon measurements from Indonesian fires provide evidence for burning of millennia-aged peat. Proceedings of the National Academy of Sciences of the United States of America, 115(49): 12419–12424. DOI: 10.1073/pnas.1806003115
- 67. Williams-Mounsey, J., Grayson, R., Crowle, A., Holden, J. 2021. A review of the effects of vehicular access roads on peatland ecohydrological processes. Earth-Science Reviews, 214. https://doi.org/10.1016/j.earscirev.2021.103528
- 68. Word, C.S., McLaughlin, D.L., Strahm, B.D., Stewart, R.D., Varner, J.M., Wurster, F.C., Amestoy, T.J., Link, N.T. 2022. Peatland drainage alters soil structure and water retention properties: Implications for ecosystem function and management. Hydrological Processes, 36(3): 1–12. https://doi.org/10.1002/hyp.14533.
- 69. Xu, J., Morris, P.J., Liu, J., Holden, J. 2018. PEATMAP: Refining estimates of global peatland distribution based on a meta-analysis. Catena, 160(September): 134–140. DOI: 10.1016/j.catena.2017.09.010
- 70. Yuwati, T.W., Rachmanadi, D., Turjaman, M., Indrajaya, Y., Yudono, H., Hadi, S., Qirom, M.A., Narendra, B.H., Winarno, B., Lestari, S., Santosa, P.B., Adi, R.N., Savitri, E., Putra, P.B., Wahyuningtyas, R.S., Prayudyaningsih, R., Halwany, W. 2021. Restoration of degraded tropical peatland in Indonesia: A review. Land, 10(1): 1–31. DOI:10.3390/land10111170
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c8663e5d-ecdc-4437-ac3c-a9ceb5831314